MIHICTEPCTBO OCBITH I HAYKH YKPATHU
YopHomopcbkuii HanioHaJAbHUH YHiBepcuTeT iMeHi Ilerpa Moruiun
PaKyJabTeT KOMII’IOTEPHUX HAYK

Kadenpa inkenepii nporpamHoro 3ade3neyeHHst

JIOTTYILIEHO JIO 3AXUCTY

3aBigyBau kadeapH IHxKeHEPIT

IPOrpaMHOro 3abe3neyeHHs

€sren [IABUJIEHKO

«_» 2025 p.

KBAJII®IKALIIMHA POBOTA
HA 3IOBYTTA OCBITHBOI'O CTYIIEHA MAT'ICTPA

AHAJIT3 MAHIITYJIATUBHOCTI HOBHMH I3 BUKOPUCTAHHAM
AJI'OPUTMIB MAHIMHHOI'O HABUYAHHA

CrnemianbHicTh 121 [HXEeHEpist mporpaMHOro 3a0e3nedeHHs

OcsiTHs nporpama «IHKeHepist MporpaMHOT03a0e3eUeHHS

3100yBau Bagum FOXHEHKO

«_» 2025 p.
KepiBHuk podorn

KaHa. TCXH. HAYK,

JTOIIEHT €sren JIABUJAEHKO

«_» 2025 p.

MukoJ1aiB — 2025

YopHOMOpPCHKHIA HalllOHAIBHUH yHIBepcuTeT iMeHi [letpa Morunu

(TOBHE HalMeHYBaHHsI 3aKJIa/ly BHIIOI OCBITH)

@DakysbTeT Komn’rorepHux Hayk

Kadenpa [mxenepii mporpaMHOro 3a0e3neyeHHs
PiBeHb BUILIOT OCBITH Hpyruii (MaricTepcbKHii)

OCBITHI} CTyIIIHb Marictp

CremianbHICTh 121 Imxenepis mporpaMHoOro 3ade3neyeHHs
OcBiTHS Iporpama [HxeHepis mporpaMHOro 3a0e3MeYeHHs

3ATBEPDKYIO

3aBigyBau kadeapu iHxKeHePiT
IPOrpaMHOro 3abe3neyeHHs

€sren [JABUJIEHKO
«_ » 2025 p.

3ABJIAHHSA
Ha kBaji(ikaniiiny poéorty 3100yBauya

Oxuenky Bagumy CepridoBuuy

(npizeuwye, im’s, no bamokosi 3000ysaua)
1. Tema kBamidikariiHoi podoTH
AmnaJiz MaHIOyISTHBHOCTI HOBHH 13 BUKOPUCTAHHAM aJITOPUTMIB MAIIMHHOTO
HaBYaHHS

3arBepxeHa HakazoM YHY im. [letpa Morunu Big «02»_nunus 2025 p.
Nel82

2. Ctpok mpejcTaBiaeHHs KBamidikaiiitHoi podotu «22» rpyans 2025 p.

3. OuikyBaHuii pe3yabTaT pPOOOTH Ta MOYATKOBI JaHi AKIIO TaKi MOTPIOH1
OuikyBanuM pe3yabTatoM € TenerpamM-00T Ul aHaai3y HOBMHHOIO KOHTEHTY Ha
OCHOBI aJITOPUTMIB MAaIIMHHOI'O HaBYaHHS, SKUH 3a0e3meuye KIacu(IKaIio TEXHIK
MAaHIITYIAIi 1 BUSIBJICHHS BUIIMOBIAHUX (hparMEHTIB TEKCTY B VKPaiHOMOBHHX 1
pPOCIMCHKOMOBHHX MaTepiajiax.

4. Tlepenik mMuTaHb, U0 MIJISTAIOTh PO3POOII:
— JIOCHIJIKEHHS MpeIMETHOI 00JacT1 i aHaJl3 ICHYIOUMX aHAJIOT1B;
— ¢opmyBaHHs crienudikaiii BAMOT 10 MPOrpaMHOTo 3a0€3MEeUeHHS;
— BH3HAYEHHS apXiTEKTYpH JJIA IPOEKTYBAHHS MIPOTPAMHOTO 3a0€3MeYCHHS;
— MOJIETIIOBAaHHS Ta IPOEKTYBAHHS TPOTPAMHOTO 3a0€3eYCHHS;
— Ppo3po0OKa MporpaMHOro 3a0e3MeUeHHS;

— 3/A1iICHEeHHS TeCTyBaHHS Ta ONTUMI3allil pOOOTH MPOrpaMHOTro 3a0€3MECYCHHS;

[lepenik rpadiuHux MaTepiaiB
[IpesenTairis

3aBga”Hs 10 CreniaabHOl YaCTUHUA

5. KoncynpranTu:

Koncynbrant Kadenpa (opranizartis) YacTtuna podoTu

Jlata Bunaui 3aBnanus «02» gunus 2025 p.

KAJJEHJIAPHUM IIJIAH
BUKOHAHHA KBaJi(ikauiiHoi podoTu

Tema xBani¢ikaniiHoi podoTH:

AHa13 MaHIOVJISTUBHOCTI HOBHH 13 BUKOPUCTAHHIM AJITOPUTMIB MAIIIMHHOTO HABYAHHS

AHaJii3 MaHINYJIATUBHOCTI HOBUH

i3 BUKOPUCTAHHAM aJ'Il"opHTMiB MAaIIMHHOI'0O HABYaHHSA

Ne HaiimenyBanHsi po6oTH IHouaTok 3akinuenns | [lpumiTku
Po3poOka Ta 3aTBEepKEHHS 3aBIaHHS HA
1. | BUKOHAHHSA KBaniikaniinoi maricrepcekoi| 01,07.2025 p. | 02.07.2025p. | BukomaHo
pobotu (KPM)
2. | Ormsin nitepatypu 3a TEMOIO poOoTH 15.07.2025 p. 24.07.2025 p. BukoHaHo
3. | Cxnaganns kaneHgapHoro mwiany KPM 24.07.2025 p. 26.07.2025 p. BukoHaHo
4. | Anaini3 npenMeTHoi o6sacTi 26.07.2025 p. 01.08.2025 p. Bukonano
5. | Po3poOka mpoeKTHUX pillIeHb 01.08.2025 p. 07.08.2025 p. Bukonano
6. | MoACTIOBAHHS 1 KOHCTDYIOBAHHA 07.08.2025p. | 15.08.2025p. | Buxonano
nporpamuoro 3adesneueHus (113)
KonyBanHs, TecTyBaHHS pO3poOJIE€HOTO
7. | TI3, aHami3 pe3yabpTaTiB TECTYBaHH, 15.08.2025 p. 10.11.2025 p. Bukonano
po3poOKa KepPIBHUIITBA KOPUCTYBaYa
9. | Odopmuennss KPM inpesenTartii 13.11.2025 18.11.2025 Bukonano
10. | Biaryk kepiBanka KPM 18.11.2025 18.11.2025 Bukonano
11. | [lonepeaniii 3axucT 24.11.2025 24.11.2025 Buxonano
3aBepmenns opopmienHs KPM Ta
12. npeseHTaii 25.11.2025 30.11.2025 Bukonano
13. | Penensypanus 14.12.2025 16.12.2025 Bukonano
14. | 3axuct kBamidikamiitHOT podOTH 22.12.2025 22.12.2025 Bukxonano
3100yBau Bagum FOXHEHKO
«_» 2025 p.
KepiBHuk podorn
KaHJ. TEXH. HayYK,
JTOIIEHT €sren JIABUJAEHKO
«_» 2025 p.

AHOTALISL
710 KBaliQikamiiiHoi podOTH MaricTpa
«AHaJi3 MaHIyJIATUBHOCTI HOBUH
13 BUKOPUCTAHHAM AJITOPUTMIB MAIIMHHOTO HAaBYaHHS»
3no6yBau 608 rp.: FOxnenko Bagum CepriiioBud

KepiBHuk: kaHa. TexH. HayK, noueHT JlaBunenko €sren OliekcaHIpoOBUY

Po6ora mpucBsueHa aHajdizy MaHINYJIATHUBHOCTI HOBUH 13 BHUKOPUCTaHHSIM
aNTOPUTMIB MaIlTMHHOTO HABYaHHS IS BUSABJICHHS Je3iH(opMaltii B yKpaiHOMOBHUX
1 pOCIICLKOMOBHUX TeKcTaxXx. Bubip TeMu 3yMOBJIICHUN 3pOCTAIOUOI0 MPOOIEMOIO
NOLIMPEHHS! MAHIMYJISTUBHOTO KOHTEHTY B 1H(OpMAaIiiHOMY MPOCTOpPI, 30KpemMa B
COLIIAJIbHUX MEpekax 1 MeceH/pKepax. Y KOHTEKCTI TiOpHIHOI BiliHM, crnpodax
BIUIMBATH Ha CYCHUIBHY JIyMKY ¥ ecKamamii coIliaJbHOT HAaNnpyru HasBHICTh
KOMILIEKCHOTO PIIIEHHS JJI1 aHali3y HOBUHHHUX MaTepilaliB € KOHYEe HEOOXITHUM.
BukopucrtanHs aaropuTMiB MallIMHHOTO HaBYaHHS 3a0€3MeUnTh Kiacudikailito HOBUH
3a TUIIAMU MAaHIMYJIAIId, BUSBICHHS MaHIMYJSITUBHUX (DparMeHTIB METOJOM Span-
detection # inTerpamito pe3ynbtariB y Tenerpam-00T, 1110 3HAYHO CIIPOCTUTH MPOLIEC
OIIIHKM SKOCTI TEKCTiB. PileHHS cTaHe y Haroji aaMiHICTpaTopaM KaHaJiB,
HiABUIIATH MEIarpaMOTHICTh KOPUCTYBaYiB 1 3poOUTh 60pOTHOY 3 ne3iHdopMaliiero
OUTBIIT €(pEKTHUBHOIO.

O06’exT: TIporleC aHai3y YKpPaiHOMOBHOT'O 1 POCIHCHBKOMOBHOI'O TEKCTOBOTO
KOHTEHTY Ha HasSBHICTh MAHINYJSATUBHHX TEXHIK 3a JOIMOMOIOI0 aJrOpUTMIB
MAIIMHHOTO HAaBYaHHS JJIs ITABUIICHHS ¢(EeKTHUBHOCTI OIIIHIOBAHHS TEKCTIiB HOBHH
nepe1 MoJaNbIIO0 MyOITiKaIlETO.

IIpeameT: anropuT™MH MAaITMHHOTO HaBYaHHS JUIS Kiacudikaiii HOBUH 3a
TUMIAMH MAaHIMYJISITUBHUX TEXHIK (BKJIIOYHO 3 BHU3HAYEHHSM HEMAaHIMYJISTUBHUX), a
TaKOX I BU3HAUCHHS BIATIOBIIHMX (PparMeHTIB TEKCTy METOJa0oM Span-detection i3
MOTAJIBITION0 THTETpaIlieo pe3ynbTaTiB y Temerpam-00T.

MerTa: aHai3 TEKCTY HOBUH Ha MPEMET BUKOPUCTAHHS MaHITyIITUBHUX TEXHIK
13 3aJy4EeHHSM QJITOPUTMIB MAIIMHHOTO HABUYaHHS, IO Mepeadayae kKiacudikaliio

HOBMH 3a TUIAMHU MaHIMYJISAIM 1 BU3HAYEHHS BIANOBIIHUX (parMeHTiB (Span-

detection) i3 inTerparieto B Temerpam-00T.

KBamidikamiitHa podoTa maricTpa CKIaJaeTbcs 31 BCTYIly, YOTHPbOX PO3ALIIB,
BHUCHOBKIB 1 IEPEIIIKY JIKEPEJ MOCUIIaHHS.

VY BCTyNi BU3HAYAETHCSA AKTYaJbHICTh TEMH, (POPMYETHCS METa JTOCTIIKEHHS,
MIPOBOJUTHCSA KOPOTKUM OTJISA TIOCTABJICHOTO 3aBJaHHS, NpeaMera i 00’ekTa
JTOCIIIKESHHS.

VY nepmomy po3Aull HAaBEAEHO MOPIBHSHHS ICHYIOYUX aJbTEPHATUBHUX
3aCTOCYHKIB, MPOBOJMUTHLCS aHaJi3 iX CUJIBHHUX 1 CIA0KUX CTOPiH, IO JOMOMOXKE Yy
CKJIaJlaHHI crieru@ikaliii BUMOT 10 po3po0JIFOBAHOT0 MPOrPAaMHOTO 3a0€3MEUCHHS.

Y apyromy po3auai po3TsAalOThCS TEOPETUYHI M METOJIOJOTIUHI OCHOBH
pO3Mi3HABaHHS MAaHIMYJIATUBHUX TEXHIK y OararoMoBHUX Tekctax elegram.
OristHyTO Ccy4acHi MiAXOAWM JO HaBYaHHS MoOJeNed — BT TpaguliiHUX 10
TpanchopMepHUX apxiTeKTyp. OOIPYHTOBYETHCS BUOIP ONTHUMAIBHUX METOJMIB IS
OaraToMiTKOBOI Kiacudikailii i Span-BUaUICHHS 3 aKIIEHTOM Ha CTpaTerii ajanraiiii,
Taki sk pre-training, fine-tuning i few-shot learning.

Y TperboMy pO3AUII OMWUCAHO MTIATOTOBKY JaHUX 13 OUYMILNCHHSM,
HOpMaJTi3alli€lo, AaHoTaIi€l0 1 CcTpaTU(IKOBAaHMM pO3OHUTTSIM IS BpaxyBaHHS
nucOanaHcy KiaciB y 0araToMOBHOMY KOHTEHTY. BUCBITIIEHO mpoliec HaBYaHHS
MOJENIe 13 BUKOPHUCTAHHSAM HAKOMHWYCHHS TPAJi€HTIB, IUIAHYBaHHS IIBUIKOCTI
HaBUYaHHS, PAaHHBOT 3yMMHKHM Ta KACTOMHUX (DYHKIIH /U1 Kiracudikaiii MaHImyIs1i i
1 IETEKII] CIaHiB.

Y derBepTOMYy PO3AiI PO3IIIHYTO €(PEKTUBHICTH Mojeicii span-detection i
class-detection, ix y3aragbHIOBaJIbHY 3JaTHICTh Ha TECTOBUX JAaHUX, a TAKOXK OLIIHEHO
poboty iHTerpoBaHoi cuctemMu B Temerpam-6oti. BusHaueHo OCHOBHI OOMEKEHHS 1
MOTEHITIITHI HANPSIMU yTOCKOHAJICHHS .

KPM Buknagena na 81 cropinmi (0e3 momaTkiB), BOHa MICTHTh 4 PO3ILIH,
38 imrocTparriii, 5 Tabmuib, 34 mKepel B MepeIiky MoCuiIaHb, 2 10IaTKH.

KitouoBi ciioBa: auaniz MawinyisimueHocmi HOBUH, ANCOPUMMU MAUUHHOZO
HasuanHs, Kiacugikayis mauinynsmuenux mexuix, span-detection, Telegram-6om,

bazamomosuuli KOHmenm, oes3ingopmayis.

ABSTRACT
of the Master’s Thesis
"Analysis of news manipulativity using machine learning algorithms"
Student: Yukhnenko Vadym
Supervisor: Candidate of Technical Sciences (Ph. D.), Associate Professor
Davydenko Yevhen Oleksandrovych

The work is dedicated to the analysis of news manipulation using machine
learning algorithms to detect disinformation in Ukrainian- and Russian-language
texts. The choice of topic is motivated by the growing problem of the spread of
manipulative content in the information space, particularly on social networks and
messaging platforms. In the context of hybrid warfare, attempts to influence public
opinion, and escalating social tensions, the presence of a comprehensive solution for
analyzing news materials is critically important. The use of machine learning
algorithms enables the classification of news by types of manipulations, detection of
manipulative fragments using span-detection, and integration of results into a
Telegram bot, significantly simplifying the process of assessing text quality. The
solution will be useful for channel administrators, enhance media literacy among
users, and make the fight against disinformation more effective.

Object: the process of analyzing Ukrainian- and Russian-language textual
content for manipulative techniques using machine learning algorithms to improve
the efficiency of news text evaluation before further publication.

Subject: machine learning algorithms for classifying news by types of
manipulative techniques (including identifying non-manipulative content), as well as
for detecting corresponding text fragments using span-detection with subsequent
integration of results into a Telegram bot.

Objective: analysis of news texts for the use of manipulative technigques using
machine learning algorithms, including the classification of news by types of
manipulations and identification of relevant fragments (span-detection) with
integration into a Telegram bot.

The master’s qualification work consists of an introduction, four chapters,

conclusions, and a list of references.

The introduction outlines the relevance of the topic, defines the research
objective, and provides a brief overview of the task, subject, and object of the study.

The first chapter presents a comparison of existing alternative applications,
analyzing their strengths and weaknesses, which helps in drafting the specification
requirements for the developed software.

The second chapter examines the theoretical and methodological foundations
for recognizing manipulative techniques in multilingual Telegram texts. Modern
approaches to model training are reviewed, ranging from traditional to transformer-
based architectures. The choice of optimal methods for multi-label classification and
span detection is justified, with emphasis on adaptation strategies such as pre-training,
fine-tuning, and few-shot learning.

The third chapter describes data preparation, including cleaning, normalization,
annotation, and stratified splitting to account for class imbalance in multilingual
content. The process of model training is detailed, including gradient accumulation,
learning rate scheduling, early stopping, and custom functions for manipulation
classification and span detection.

The fourth chapter considers the effectiveness of span-detection and class-
detection models, their generalization ability on test data, and evaluates the
performance of the integrated system in the Telegram bot. Key limitations and
potential directions for improvement are identified.

The conclusions analyze the work and the results obtained.

The master’s thesis is presented on 81 pages (without appendices), it contains
4 chapters, 38 figures, 5 tables, 34 references, 2 appendices.

Keywords: analysis of news manipulativity, machine learning algorithms,
classification of manipulative techniques, span-detection, Telegram bot, multilingual

content, disinformation.

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 2
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

SMICT
MEPEJIIK CKOPOQUEHDcooiiiiiiiiiiiii e 4
LSO A U O P PP PP PP UUPPTOPPPPPPPRS 5
1 AHAJI3 ITPEJMETHOTI OBJIACTTcoovviviiiieieicieeee e 7
1.1 AKTYalnbHICTh PO3POOKHU 3aCTOCYHKY JJISl MOIIYKY MAHITYJISIIN ... 7
1.2 OMNUC TPEAMETHOTO CEPEIMOBHIIIA ... eeeeeeeeeeeaeaeeaeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaens 9
1.3 OIS ICHYFOUMX QHATIOTIB +.vveuttreeeesisreeeeesssssnseeeesannneeeessnnnnneessannnneeeesannnns 11
1.4 AnHami3 po3pOOTIOBAHOTO 3ACTOCYHKY ...uuvrrreesiirrrreessannrreeeesannnnneeessannneeessanns 18
BHCHOBKH 1O POBIULY 1...iiiiiiiiiiiiiiie sttt 20
2 JOCJIIJDKEHHSA, MOAEJIFOBAHHSA [TEXHIUHE [TPOEKTYBAHHAL...... 21
2.1 OnuUC HAOOPY JAHUX M OBHAKvvveeeeeiiiieieeesaniieeeeesasineeeessnnereeessnnnnneeeeeanees 21
2.2 Ora4 METOAOJIOTH 1 IIAXOIB AJIS HABYAHHS MOJEICH ...evvvnevivneeeivieeeannnnn, 23

2.3 Crparerii HaB4aHHS JJIs ONTUMI3aIlii TpaHcOPMEPHUX MOJIeNiel y 3aB/IaHHI

PO3IMTI3HABAHHS MAHITTYIIITHBHIX TEXHIK ©vvvvrtieeesssisisurttrrereeessssssssssssssnseeseseessnnnnssnsnnes 38
2.4 Crnenudikaliii BAMOT 10 MPOTPAMHOTO 320€3TMEUCHHS ..vvvvvrrreeessssirirrrrneneensss 41
BHCHOBKH JTO PO3BIIIITY 2.1tttttttteeeeisiiiiititteriteseessssssstsssseeesssssssssssssssssssssessssssnssssssseeees 44
3 HABYAHHS MOEJTIEM ..ottt 46
3.1 [TinroToBKa mataceTy A HaBYaHHS Mozeli Span-detection.............ccceee.neee. 46
3.2 [TinroToBKa maraceTy A HaBYaHHS Mozeli class-detectionc.......... 51
3.3 Hapuannas Mozaeni kmacu@ikamii TEXHIK MAHITYIIAIIIHo.vvvvvvrieeeeeeeseesiinnnne 54
3.4 Hapuants Moaemi SPAN-AeteCtiONcoooiviiieiiiiiiie e 56
237162 00):3:9 7 001 (015 010 k31 4 ks 20K TP PRTUR PR 58
4 OIIHKA 1 TECTYBAHHS PO3POBJIIOBAHOI'O PIIIEHH 60
4.1 Awnami3 # oriHKa pe3y/IbTaTiB HaBuaHHs Span-detection Mogei 61
4.2 Amnaui3 i oriHka pe3ynbTariB HaBuaHHs Class-detection moxmeni................... 65
4.3 Amnaniz poOOTH MoIeTIel THTETPOBAHUX Y TEHETPAMvvvvveeeiiiiiieeeiiiiiieeeenns 72
BUCHOBKH JTO POBIIITY 4 ..uutttuuuuuuituutustsssssssssssnssmennns 76
|27 (5 (037 1 RPN 78
IMEPEJIIK IDKEPEJI TIOCHITAHHS ..ot 79

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs

Amnamnis MaHiHyJ'IHTI/IBHOCTi HOBMH 13 BUKOPUCTAHHAM aJ'II‘OpI/ITMiB MAalIIMHHOI'O HaBYaHHS

JIOIATOK A
JIOJJATOK B

2025 p.

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

HEPEJIIK CKOPOYEHb
113 — HporpaMHe 3a0e3neyeHHs
[IK — NEPCOHAIBHUI KOMII FOTEP
UX — user experience
Ul — user interface
API — application programming interface
Al — artificial intelligence
WAP — wireless application protocol
SvC — support vector classifier
CNB — complement naive bayes
LR — linear regression
RF — random forest
GB — gradient boost
DL — deep learning
CNN — convolutional neural network
RNN — recurrent neural network
LSTM — long short-terrm memory
BiLTSM — bidirectional LSTM
GRU — gated recurrent unit
RelLU — rectified linear unit
GELU — gaussian error linear unit
BIO — begin, inside, outside
GPU, — graphic processing unit
CPU — central processing unit
EWC — elastic weight consolidation
NLP — natural language processing
WAP — wireless application protocol
NER — named entity recognition

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 5
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

BCTYII

AKTyaJIbHiCTb TeMM KBaTI(IKAIIHHOI MaricTepcbkoi poOOTH 3yMOBJIECHA
3pOCTa0Y0I0 MPOOJIEMOIO MOIIMPEHHS MaHIMYJIATUBHOIO KOHTEHTY B 1H(QOpMaLIiHOMY
MPOCTOPI, 30KpeMa B COIIaJIbHUX MEpekax 1 MeceHKepax. Y KOHTEKCTI TriOpuaHOi
BiliHM, JAe3iH(opmalis 1 MaHINYyJIATUBHI TEXHIKM, Taki SK BHOIpKOBa Mpas[a,
y3araJibHeHHsI, aleJsiis 10 CTpaxy 4M Kiie 0e3 CyTi, BAKOPUCTOBYIOTbCS AJIsS BIUTUBY
Ha CyCHUIbHY AYMKY, MIAPUBY JIOBIPH JI0 JEPKaBHUX IHCTUTYIIIH 1 ecKaallii coriaabHOi
Hanpyrd. OcCoOJIMBO aKTyaJIbHHM II€ € IS YKPaiHOMOBHOTO 1 POCIHCHKOMOBHOTO
KOHTEHTY, OCKUIbKM OOMJIBI MOBU AKTHMBHO BUKOPUCTOBYIOTHCS B 1H(MOpMAIITHUX
KaMITaHIsX, CIPSIMOBAHMX Ha YKpaiHCBKY ayamTopito. Po3poOka Temerpam-6ota, skuii
aHai3ye TEKCT HOBMH Ha HAsSBHICTh MAaHINYJATHBHUX TEXHIK, JO3BOJIUTH
aJMIHICTpaTOpaM KaHaJiB OIIHIOBAaTH SKICTh TEKCTIB HOBHH Iepe]] MyOJTiKalli€r, a
3BUYAHUM KOPUCTYyBadaM — BIEBHUTHUCH y JIOCTOBIPHOCTI OMyOiKoBaHOi HOBUHU. Lle
CIPUSATAME TIABUIIEHHIO SKOCTI KOHTEHTY, 3HWKEHHIO BIUIMBY Je3iH(opmarii
MiBUIIICHHIO MEI1arpaMOTHOCTI HE TUIbKHM aJMIHICTPATOPiB, a TAKOXK ayIUTOPIi.

O0’exT: mpolec aHaI3y YKpaiHOMOBHOTO 1 POCIHICHBKOMOBHOTO TEKCTOBOTO
KOHTEHTY Ha HasBHICTh MaHINMYJISITABHUX TEXHIK 32 JOTIOMOT' OO aJITOPUTMIB MAIIMHHOTO
HAaBYaHHS JUIS IABUINCHHS €(GEKTUBHOCTI OIIHIOBAaHHS TEKCTIB HOBHH TEpe
TIOTAJTBIIIOIO ITYOJTIKAITIETO.

IIpeameT: aaTOpUTMH MAITMHHOTO HaBYaHHS I Kiacu(ikallii HOBUH 32 THIIAMU
MaHIMyJSITUBHUX TEXHIK (BKJIIOYHO 3 BH3HAYCHHSM HEMAHIMYJSTUBHHX), & TAKOXK JJIS
BHU3HAYCHHS BIIMOBIAHUX (parMEHTIB TEKCTy MeTojoM Span-detection i3 mopabiioro
1HTeTpaIieo pe3yibTaTiB y Tenerpam-00T.

MeTa: aHaii3 TeKCTy HOBHH Ha MPEAMET BUKOPUCTAHHS MAHIMYJISTHBHUX TEXHIK
13 3aJTy4eHHSIM QJITOPUTMIB MAITMHHOTO HABYAHHSI, IO Tiepei0avae kiaacuikariito HOBUH
3a TUIMAMH MaHINyJSIid 1 BH3HAYCHHS BiANOBiMHUX (parmeHtiB (Span-detection) i3
iHTerpaiiieto B Tenerpam-00T.

J{1s1 TOCATHEHHS IMOCTAaBAEHOI METH HEOOX1THO BUPIIIMTH HACTYMHI 3aBAAHHS .

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 6
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

— IIPOBECTHU aHaNi3 MPEeIMETHOI 00yacTi, 30KpeMa TEXHIK MaHInyJsamii Ta
0CcOONMBOCTEN X BUSBICHHS B YKPaiHOMOBHHX 1 pOCIHCBKOMOBHHUX TEKCTaX.

— JIOCTIIUTH HAsIBHI HAOOPU AaHUX W IHCTPYMEHTH JUIsl aHAITI3y MaHIMYJISITUBHOTO
KOHTEHTY.

— peaiizyBaT MOJI€JIb MAIIMHHOTO HaBYaHHS JJIs OlHApHOI 1 0araTtokjiacoBOi
kiacugikalli MaHIMyJISITUBHOTO KOHTEHTY.

— peanizyBaTh MOJENb JJIsl BUSBJICHHS CHaHIB MAaHINYJISTUBHUX (PPArMEHTIB Yy
TEKCTI.

— po3pooutu Tenerpam-00T Ha ocHOBi Oi0miorekn python-telegram-bot, skwmii
IHTETpyE MOJIeNli MAIIMHHOTO HaBYaHHS, aHAJli3y€ HOBHHH 1 BHUBOIUTH PE3YyJIbTaTH
OI[IHKM MaHIMyJISTAUBHOCTI JIJIsl aIMIHICTPATOPIB.

— MPOBECTH TECTYBAaHHS PO3POOJICHOTO PIllICHHS Ha peanbHUX JaHuX i3 Tenerpam-
KaHATIB 1 OI[IHUTH HOTO €(PEKTHUBHICTD.

IIpakTuHe 3HAYCHHA: po3pobIeHU Tenerpam-6oT JI03BOJIUTh
aaMmiHicTparopam Tenerpam-KaHajliB — aHaji3yBaTd HOBUHM Ha HasBHICTH
MaHIMyJISATUBHOTO KOHTEHTY, III0 CIPOCTUTh MPUUHATTS PIllIeHb 11010 iX myouikarii. e
CIIPHUSATAME TIJBHUINCHHIO SKOCTI KOHTCHTY, 3HHKEHHIO TOIIUPEHH Ae3iH(opmariii Ta
MiBUIICHHIO MeEIiarpaMOTHOCTI. Y CBOIO Yepry 3BHYaiHI KOPHUCTYBadi 3MOXKYTh
MiBUIIUTH BJIIACHUN PIBEHb MEIarpaMOTHOCTI, MO0 HE MiJJaBaTHCS Ha IOIIMPEHi
MaHIMyJISITUBHI MPAKTHKU. PilieHHs Takok Oy/1e KOPUCHHUM JUISI KYPHATICTIB, aHAJIITUKIB
1 TPOMAJICBKUX OpraHi3allii, sKi MpaIoTh 13 YKPaiHOMOBHUM Ta POCIHCHKOMOBHHUM
KOHTEHTOM.

Anpodauis pesyabratiB KMP BigOysanacs mig wac XXVIII Bceeykpaincbkoi
HAyKOBO-TIPAaKTHYHOI KoH(pepeHIii «Morunsucbki untanas — 2025», Mukomnais, 10-14

nucronana, 2025 p. (donatok A)

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 7
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

1 AHAJII3 NIPEJMETHOI OBJIACTI
1.1 AKkTyaJbHicTh pO3pO0KH 3aCTOCYHKY VISl MOUIYKY MAHIIyJIALii

Tema kBamidikaifiinoi po6oTu marictpa y cdepi po3podku Tenerpam-6ota s
aHai3y MaHIMYJISTUBHOTO KOHTEHTY € aKTYaJlbHOIO, OCKUIbKY B1I3HAYAETHCS MOCTIHHUM
3pOCTaHHSIM TMOIMUTY HA TakKl IHCTPYMEHTH B PI3HUX CerMeHTax I1H(opManiiHoro
npocTopy. I3 KO)KHUM POKOM 30UIBIIYETHCS KUIbKICTh HOBUHHUX MOBIJIOMJIEHD, Y SIKUX
BUKODUCTOBYIOTBCSL ~ MAHIMYJISITUBHI ~ TEXHIKM, Taki sK BHOIpKOBa MpaBja,
nepeOUIbIIeHHS, aeAllisl 10 CTpaxy, BUKOPUCTaHHS KJIilIe i 1HIIl. Y Cy4yacCHUX yMOBax
riOpuaHOi BIfHM Taki METOAM 3aCTOCOBYIOTHCS CHUCTEMAaTHYHO, 1100 BIUIMBAaTH Ha
IPOMAJICBKY JIyMKY, MIJpUBAaTU JAOBIPY [0 JEpKaBHUX I1HCTUTYLIM 1 CTBOpPIOBATH
atMocdepy coriansHoi Hanpyrd. [lomut Ha THCTPYMEHTH aHali3y MaHIMYJSTUBHOCTI
HOBUH 3yMOBJICHMH HE JHUIIE CTPIMKUM PO3BUTKOM I1H(MOPMAI[IHHUX TEXHOJOTIH Yy
Cy4acCHOMY CBITI, a TAKOX 3arajbHOI0 TeHACHITIE0 10 udpoBizamii B Meaia. HoBuHHUM
IPOCTIp 3apa3 XapaKTepU3yeTbCAd 3pOCTaHHSAM MOMyJsipHOCTI TenerpaMm-kaHamiB, e
aMIHICTPATOPU MOXKYTh CBIIOMO BBOJHWTH B OMaHY BJIACHY ayJAMTOPIIO JUJIT OCOOMCTHX
a00 Yy)XHX IHTEPECIB.

3pocTaHHs KOHKYpEHIlii B MemianmpocTopi il ob6csriB iHdopmarllii 1jas o0poOku
POOHTH aKTyaJlbHOIO PO3pOOKY IHCTPYMEHTIB JUIS aHAN3y TEKCTiB HOBHH. TpaauIliiini
METOM PYYHO!I MEpPEeBIPKH € MOBUILHUMH, TPYAOMICTKUMHU U CyO’€KTUBHHUMH, TOMY
noTpeOyIOTh 3aMiHM Ha CyYacHI TEXHOJOTIYHI PIIICHHsS. 3aCTOCYyBaHHS alTOPUTMIB
MalTMHHOTO HAaBYaHHS JIA€ 3MOTY CTBOPHUTH CHUCTEMY, SKa IIBUAKO OOpOOsi€e BETUKi
MacHMBH TEKCTiB, OO ’€KTMBHO BH3HAYa€ HAABHICTh MAHINYIAMIM 1 JOTOMarae
KOpHUCTyBayaM POOUTH 3BaXKCH1 BUCHOBKH MICIIS IPOYUTAHHHS HOBHHH.

Po3poOka Tenerpam-60Ta K IHCTPYMEHTY JIJIsl aHAJI3y MaHIMYISITUBHOCTI HOBUH
€ HE JUIIE TEXHIYHOI0, a W COIaJbHO 3HAYYIIOK 3aj1adyero. BoHa crpusie po3BUTKY
MeJIlarpaMOTHOCTI Cepejl HaceleHHs, 1 J03BOJISIE KOPUCTyBayaM 3MOTY MOMIYaTH
naTepHU BIUIMBY HA CYCHUIBHY AYMKY, L0 COpUATAME (OPMYBAaHHIO KPHUTHYHOTO

muciienss. He ciig 3a0yBaTu npo MOKIIMBICTh 1HTErpallii moi0HUX pillleHb Y MOMYJSPHI

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 8
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

MECEH/IKEPH JT03BOJIIE KOPUCTYBAayaM OTPUMYBATH pe3yJbTaTH aHali3y 0e3MmocepeHbO
y 3BHYHOMY CEpPEIOBUIIl CHUIKYBaHHSA, IO NIABUIIYE €()EKTUBHICTb BUKOPHCTAHHS
TAaKUX TE€XHOJIOTIN 1 CTUMYJIIOE IXHE MOIIUPEHHS.

CydacHi TexHOJIOT1T poO3pOOKM MPOTrpaMHOro 3a0e3MeueHHs J03BOJISIIOTH
CTBOPIOBATH CKJIaJIHI CUCTEMHU Ha 0a31 IITYYHOTO IHTEIEKTY, 10 ONTUMI3YIOTh IPOLECH
aHayi3y HOBUH 4epe3 aBTOMAaTH30BaH1 MoJieNl. Y cydacHOMY IU(POBOMY CEpedOBHIII
MiAX1A 13 BUKOPUCTAHHSIM JBOX MOJEJICH MaIIMHHOIO HaBYaHHS — JJig O1HApHOI,
OararokiacoBoi Kkiacu@ikaimli THUIIB MaHIMYJISTUBHUX TEXHIK 1 JJig BUSBICHHS
KOHKPETHUX (pParMeHTIB MaHIMYJSITABHOTO TEKCTY — HE € YK€ MONIMPECHUM. THM He
MEHIIl BHUINE3a3HAYCHUM MiIXiJ Mae ycl IMaHcH, o0 3apeKoMeHIyBaTH cebe sK
e(heKTUBHUI 1HCTPYMEHT Il PO3OUTTS CKIQJHUX 3aJad Ha MEHII, aBTOHOMHI
kommonentd. Bukopucrtanus Artificial Intelligence (Al) migxony y po3poo6mi Tenerpam-
0oTa cTae KIHOYOBUM YHHHUKOM Y 3a0e3rnedeHHI €()eKTUBHOI POOOTH 1HCTPYMEHTY 13
BEJIUKUMHU 00CATaMH YKPaiHOMOBHHUX 1 POCIHCHPKOMOBHUX TEKCTiB. Po30UTTS 3amau Ha
HE3aJIeKH1 MOJIENI J03BOJIIE CIPOCTUTH iX PO3MIUPEHHS 1 MIIATPUMKY, IO BAXKIUBO Y
3a0e3IeueHHl CTa01IbHOI 1 IBUIKOT pOOOTH B YMOBaX OOMEKEHOT MOMYJISIPHOCTI TaKUX
THCTPYMEHTIB.

VY cdepi po3moAiIeHUX CUCTEM, OCOOJMBO B 00JIaCTi aHAMI3y KOHTEHTY B
MECCHJIDKepax, 3aBJaHHS IMIITPUMKH Y3TOJKEHOCTI JaHHMX IIiJ] Yac KepyBaHHS CTaHOM
pi3HUX Mojenel € mepmodeproBuM. Ll ckiIagHICTh BUHUKAaE dYepe3 HEOOXITHICTH
rapaHTyBaTH, IO BCi Jil0Yl KOMIIOHEHTH MAarOTh YyHi(IKOBaHE YSABICHHS TPO JaHi,
HE3BOXAIOYM Ha TNPUTAMAHHY 3aTPUMKy 1 WMOBIpHICTH 300iB Yy 3B’A3KY.
MacmTaboBaHICTh 1 PO3IIUPEHHS] CUCTEMHU BUSBICHHS MAHIMYJSIINA 3alie)kKaTh Bil
HAJIIHOT cTparterii, sika JOMOMOXKE 3aCTOCYHKY BIIOpPATHCS 3 JUHAMIKOIO MyOJikarii
HOBUH, JIe MAHIMYJATUBHI TEXHIKU MOCTITHO BUSBISIOTHCS 1 KIACU(IKYIOTHCS B PEKUMI
peanbHOTO Yacy. [3 BuIIe3a3HaYeHUMH 3a]ja4aMi MOYKE BITIOPATHCS apXiTeKTypa Ha 0asi
Al-moneneit. HeoOX1nHICTh KOOpAMHYBATHU i 3a0e3MeuyeThcsi 0€3 CTBOPEHHS TICHOTO
3B’SI3KY, 110 JOCSTAETHCSI BUKOPUCTAHHSM Yepru MoBigoMieHb y Tenerpam-00Ti.

BusiBnenns MaHiHy.]'IﬂTI/IBHOFO KOHTCHTY B TenerpaM-KaHanax, 3aBsKH IIPOrpecy

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 9
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

B Al-TeXHOJOriAX, IHTErpauii MoJenel MallMHHOIO HABYAHHS 1 MIAKIIOYEHHS 10
MECEHIKEPA MOK€e 3pOOUTH BaroMuil BHECOK Y MOKPAIIEHHS MPOLIECIB MEPEBIPKU HOBHUH.
Ha »anb, noniOHI IHCTPYMEHTH MOKHU 110 HE HAOYJIM MIUPOKOT MOMYJSPHOCTI U PIAKO
3ycTpivaroThesi B Telegram-6orax. 3py4HiCTh, JOCTYIHICTh, MPO30PICTh, OXOIICHHS
YKpPaiHOMOBHOi 1 POCIMCHKOMOBHOI ayAUTOpli PO3IMIMPATH MOXIMUBOCTI SK IS
aJAMIHICTPATOPIB KaHAJIB, TaK 1 AJs 3BUYAHUX KOPUCTYBauiB. Y pe3yJbTaTi IHAYCTPIs
00poTHOM 3 e31HPOopMAaIli€r0 MOXKE CTATH OUIBII MPO30POI0, €PEKTUBHOIO 1 TOCTYITHOIO
JUTSI IIAPIIOTO KoJia 0ci0, MOMpHU MOTOYHY 0OMEXEHY MOMMPEHICTh TAKUX PILLIEHb.
TakuM YMHOM aKTyalbHICTb TEMH BHM3HAYA€TbCSI HE JUIIE MPOOJIEMOIO
nesindopmarii, a TakoX NOTpeOOI0 B IHCTPYMEHTaX, IO 3[aTHI OMNEPATHBHO 1
00’ €KTHBHO aHaNI3yBaTH BEJIMKI MACUBA HOBUHHOTO KOHTEHTY. 3alpONOHOBAHUN MiX1]
3a0e3nedye MO€JHAHHS HAYKOBUX METOJIB aHaji3y TEKCTY, MPaKTUYHOI peasizalii y
BUIJISAZ1 NPOrPaMHOrO PIIIEHHS 1 KOPUCTYBALBKOI OCTYIHOCTI uepe3 MOMYJISpHUN

mecenkep Telegram.
1.2 Onuc npeaMeTHOTrO cepe0BHINA

OG’eXT AOCHITKEHHS — MPOIEC aHaIi3y YKpaiHOMOBHOTO 1 POCICHKOMOBHOTO
TEKCTOBOTO KOHTEHTY Ha HAsSBHICTh MAHIMYIATUBHUX TEXHIK 3a JOTIOMOTOIO aJITOPUTMIB
MaIlTMHHOTO HABYaHHS JUIS IMJBUINCHHS €()EKTUBHOCTI OIIHIOBAHHS TEKCTIiB HOBHUH
nepe1 MoJaNbIIO0 MyOITiKaIlETO.

[Ipeamer nmocaimpKeHHS — aNrOpUTMU MAITMHHOTO HaBYaHHS IS Kiacudikailii
HOBMH 3a THINAMH MAaHINYJSITHBHUX TEeXHIK (BKIIOYHO 3 BU3HAYCHHSAM
HEMaHIMYJSITUBHUX), a TaKOX [JI1 BU3HAYEHHS BIAMOBITHUX (PArMeHTIB TEKCTY
MeToI0M Span-detection i3 moxabIoro iHTETpaIliero pe3ynbrartiB y Tenerpam-00T.

[Iporniec aHanmizy yKpaiHOMOBHOT'O 1 pOCIHCHKOMOBHOI'O TEKCTOBOI'O KOHTEHTY Ha
HASBHICTh MAHIMYJISTUBHUX TEXHIK 32 JOMOMOTOI) aJITOPUTMIB MAlTUHHOTO HAaBYAHHS
BHUCTYMAa€e 00’€KTOM JOCHIIKEeHHS. EQekTuBHA olliHKa BKJIOYae B ceOe BUSBICHHS
MPOBOKATUBHUX PSAJKIB Y TEKCTaX, Kiacu(ikallito 3a TUIIAMU MAaHIMYJISITUBHUX TEXHIK 3

ypaxyBaHHSIM BHUIIJIKIB BiJICYTHOCTI MaHinynid. Takox mporec mnependayae

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 10
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

BU3HAYCHHS KOHKPETHMX ()parMeHTiB MaHINyJsAIii MeromoM span-detection i3
MOJAJIBIIOI0 THTETpali€ero pe3ynbTaTiB y Tesnerpam-00T A 3py4HOCTI aHANI3y TEKCTY.

CtpyktypHi 1 (QYHKIIOHaJbHI XapaKTepUCTUKU OO0’ €KTa JTOCHIIKCHHS
(GopMyIOTbCSI MOro BHYTPIIIHIMU KOMIIOHEHTaMU 1 iX mnpu3HayeHHsAM. CTpyKTypHI1
XapaKTEPUCTUKHU 00’ €KTa JOCIIKSHHS:

1) Tenerpam-00T: BKIIIOYae B ce0€ OCHOBHY CEPBEPHY YAaCTHHY, HAIUCAHY Ha
MOBI mporpamyBaHHs Python, ska 3a0e3meuye o00poOKy BXiJHUX TOBIOMJICHb
KOPHUCTYBayiB, B3a€MOJIII0 3 MOJIEISIMU MAIIMHHOTO HaBYaHHS 1 GOPMYBaHHS BIAIOBIICH
y 3pyuHomy dopmati. boT BucTymae iHTepdeiicoM MK KOPUCTYBaue€M 1 CHUCTEMOIO
aHaii3y MaHIMYJISTUBHOTO KOHTEHTY, 3a0€3Meuyloud JIOCTYMHICTh 1HCTPYMEHTY
0e3mocepeTHbO B MECEHKEPI;

2) MOJIeJli MAaIIMHHOTO HaBYaHHS: CKJIQMAIOTBCSI 3 JIBOX OKPEMHX
KOMITOHEHTIB — MoOel Kiacudikaiii TEKCTIB 3a TUMAMH MaHIMYJISATUBHUX TEXHIK 1
Mojeni span-detection, sika Bu3Hauae KOHKPETHI (parMeHTH MaHIMYJISTUBHOTO TEKCTY.
OOuBa KOMIIOHCHTH peajli3oBaHi 3 BHKOpPHCTaHHsAM Oibmiorex torch i transformers.
Hapuanns mopjenedt BiIOyBaeTbCs Ha TOMEPEAHBO TIATOTOBICHOMY JaTaceTi 13
3aCTOCYBAHHSM PO3IOLTY Ha HaBYaJIbHY 1 TECTOBY BUOIPKH;

3) iHbpacTpyKkTypa IS HaBYaHHA 1 TECTYBaHHS: BKJIIOYAE CKPHUNTH ¥
JOTIOMDKHI MOJYJi, SKI aBTOMAaTH3yIOTh IPOIECH IIJATOTOBKM JIaHMX, TOKEHI3aIlli,
HaBYaHHS, BaJifamii ¥ omiHku Mojaeneid. s peamizaliii BUKOPUCTAHO MIUPOKUN HaOip
0i0mioTek, 30kpema numpy, pandas, sklearn, tqdm, matplotlib, nltk, mo mo3BonstoTH
MIPOBOJUTHU aHATI3 PE3yIbTaTiB, OOYUCITIOBATH METPUKHU 1 Bi3yani3yBaTu €(DEKTUBHICTH
pobOTH MOJEICH.

OYHKI[IOHAIBHI ~ XapaKTepUCTUKH 00 ’€KTa JOCHIKEHHS BU3HAYAIOTHCS
3aBMaHHSAMU 1 (QyHKIisSIMHA, SKi TOTPIOHO peami3yBaTd JUIA JOCSITHEHHS —IJIeH
nocipKeHHs. DYHKITIOHATBHI XapaKTePUCTUKHA 00’ €KTa JTOCTIIKCHHS :

1) aHali3 MpeaIMeTHOI 001acTi 1 METO0JIOT1l PO3POOKHU: TOCIIIKEHHS, BUOIp

METO/IIB 1 MIIXO/1B, 110 HAWOUIbII €)eKTUBHO 3aCTOCOBYIOTHCS ISl CTBOPEHHS CHCTEM

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 11
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

BUSIBJICHHSI MaHINYJSTUBHOTO KOHTCHTY 13 BHUKOPUCTaHHSM aJTOPUTMIB MaITUHHOTO
HABYaHHS;

2) aHali3 pileHb-aHAJOTIB: BUBYEHHS ICHYIOUMX CEpPBICIB JUIsl MEpPEBIPKU
HOBUH, BU3HAYEHHS IXHIX CHJIBHUX 1 CJIa0KHUX CTOPIH 13 METOK MOJJIbIIOrO
BUKOPHUCTaHHS OTPUMAHHUX BUCHOBKIB Y BIIACHOMY TPOEKTI,;

3) aHaJi3 TEXHOJOTr MAIIMHHOTO HaBYaHHSA 1 010J110TeK: BUOIP ONTUMATIBHUX
bpelMBOpPKIB, IHCTPYMEHTIB, MoJeNiel s Kiacudikaiii TEeKCTIB 1 BUKOHAHHS Span-
detection;

4) BU3HAUEHHS HEOOXiAHOro QyHkuioHany Tenerpam-60Ta: BCTaHOBJICHHS
NEepeNiKy MOXKJIUBOCTEH, SIKI NMOBHMHHA 3a0€3MEUYUTH CHUCTEMa, 30KpemMa Kiacudikarris
TEKCTY HOBWHH 3a BHJIAaMH BUKOPHCTAHMX MAaHIMYJAIiNA, BHJIUICHHS MaHITYJISATHBHHUX
(¢parMeHTiB 1 HaJlaHHA KOPUCTYBA4Y€B1 pe3yJIbTATIB Y 3py4HOMY (popmarti.

Po3po6ka Tenerpam-6oTa sl aHadidy HOBUHHOTO KOHTEHTY Ma€ Ha MeTi
MiABUIIUTH PIBEHb ME1arpaMOTHOCT1 KOPUCTYBAYiB 1 3a0€31MeUNTH IIBUIKUH JOCTYII JI0
pe3yibTaTiB MepeBipku JOCTOBIpHOCTI iHopmarli. Llg 3amaua morpedye peTenbHOro
aHaJi3y JOCTYITHUX TEXHOJIOT1H, MPaBUILHOTO BUOOpPY Mojeiel 1 610110Tek, a TaKoK

ypaxyBaHHS 0COOJUBOCTEH YKpPaiHOMOBHHUX 1 POCIHICHKOMOBHUX TEKCTIB.
1.3 Orasj icHyl04YuX aHAJIOTIB

BuB4eHHSI pUHKY ICHYIOUUX aJbTEPHATHB € HEOOXITHUM €TaroM, OCKUIBKH BOHO
JIa€ MOKJIMBICTD HE JIMIIE MOOAYNTHU 3arajbHy KapTUHY, a i OUTBII IeTaTbHO OKPECIUTH
CWIbHI ¥ cIa0Ki CTOPOHM KOXHOTO pilmieHHsA. Takui Minxim 3a0e3nedye IPYHTOBHE
pPO3yMiHHSI TOTO, SIKi camMe (YHKIIOHAIbHI MOJJIMBOCTI BapTO BpaxyBaTH Il dYac
MOAANbIIOT PO3POOKM BIACHOTO NPOrpaMHOro MNpoaAykTy. Orisag 1 NOpIBHSAHHS
3aCTOCYHKIB-aHAJIOTIB CTAIOTh BAXJIMBUMHU KPOKaMH, IO 3HAYHO CIPOIIYIOTH MPOIEC
dbopmyBanHs crierudikailii BUMOT 10 MaiOyTHROTO TiporpamHoro 3adesneuenss (I13). I3
LI€}0 METOIO ISl IPOBEACHHS aHalizy OyJio BiIIOpaHO HU3KY HAWOLIbII MOMYJISPHUX 1
MONIMPEHUX MPOTPaMHUX PillleHb y cerMeHTi BusBiaeHHs MaHinyssii: Fallacy Detector

(tabm. 1.1), Gaslight Check (ta6x. 1.2), Fallacy Finder (ta6:. 1.3).

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 12

Amnamnis MaHiHyJ'IHTI/IBHOCTi HOBMH 13 BUKOPUCTAHHAM aJ'II‘OpI/ITMiB MAalIIMHHOI'O HaBYaHHS

131

Fallacy Detector

Fallacy Detector — 1ie oHnaifH-IHCTPYMEHT, IPU3HAYCHU JIJISl BUSBIICHHS JIOTTYHIX

xu0 y texcrax. CepBic aHali3ye BBEICHHI KOpPUCTyBaueM MaTepiasl 1 BU3HAuYa€, 4u

MICTUTh BIH MAaHINYJSATHUBHI NMpuUioMHU, codpizMu abo MmoMuiku aprymenranii. Moro

OCHOBHA MCTa IIoJIArac y HiI[BI/II]_IeHHi KPUTHUYHOTI'O MHCJICHH, I[OHOMOBi KOpuUCTyBadYam

Kpalie po3yMITH CTPYKTYPY 1 SIKICTb apryMeHTIB. [HCTpyMEHT Moke OyTH KOPHUCHHUM SIK

JUISL CTYAICHTIB 1 BUKJIQJadiB, Tak 1 JUIS KYPHAJICTIB, SKI MPALIOIOTh 13 BEIUKUMU

oOcsiramu TekcToBoi iHpopmaii [1].

Tabauus 1.1 — Omuc Fallacy Detector

Ha3zsa

Fallacy Detector

Po3pobnuk

Logical Fallacies Project

ApxiTekTypa

Client-server

Mosn

peasizamii

Python — backend
JavaScript, HTML, CSS - frontend

D yHKIii

1)aHami3 BBEIECHOTO TEKCTYy HAa HASBHICTh JIOTIYHHUX XHO 1 MaHIMyJIATHBHUX
MPUHOMIB;

2) BUSIBIICHHSI ITMPOKOTO CIEKTPY CO(i3MiB 1 MOMHIIOK apryMeHTaIlii;

3) HalaHHS IOSICHEHHS [I0I0 BUSABJICHUX JIOTTYHUX MOMUJIOK 13 MPHUKIIAIaMH;

4) knacudikallis 3HaAHICHUX OMUJIOK 3a KaTETOPIsIMH 1 MIPaxXyHOK iX KLTBKOCTI
B TEKCTI JUIS y3araJIbHEHOI OIIIHKH PIBHSI MaHIMyJISTHBHOCTI;

5) Bi3yauizariiss pe3yabTariB aHali3y y 3py4HOMy (opMmaTi (CIHCOK BHUSBJICHUX

X0, KOPOTKI OTIUCH, 1HO/I1 TIIJICBIYYBAHHS Y CAMOMY TEKCTI).

ITepeBaru

1) focTynHicTh OHJAWH 0€3 HEOOXiTHOCTI BCTAHOBJICHHS IPOTPAMHOIO
3a0€e3I1eUeHH;

2)ananiz tekcty mo 10000 cumBosie i PDF moKyMeHTIB jisi KOPHCTYBadiB i3
IUIATHOIO MIITUCKOIO;

3)mpoctuii i IHTYITHBHO 3po3yMinuii iHTepdeiic, 110 POOUTH CEpBiC 3pYyUHUM Y

BUKOPUCTAHHI JUISI pI3HUX KaTeropiii KOpUCTyBayiB.

Henoaikn

1) mpairtoe Juiie 3 TEKCTAMHU aHIITIHCHKO0 MOBOIO;

2)He MATpUMYE BEIHKHUN 00csr TekcTy i aHamizy (mo 1000 cumBoOmiB y
0e3KOIITBOBHIM Bepcil).

3)norana peanizaiis aBTopu3alii KopucTyBadya (Iicis BXOIy 1O OOJIKOBOTO
3alUCy OHOBJIEHHS CTOPIHKM MPHU3BOJUTH JIO ABTOMAaTHYHOTO BHXOIY 3

00JTIKOBOTO 3aIHCy)

Be0OcaiiT

https://finder.logicalfallacies.org/detector/

2025 p.

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 13
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

. Home mg Dashboard Sign Out
(Pinder e e fameeas seno

By LogicalFallacies.org

Fallacy Detector

Form will accept a maximum of 1,000 characters.

Type or paste your text here..

Analyze Text

Your feedback will appear here after analysis.

Pucynox 1.1 — [Tu3aiin intepdeticy 3acrocynky «Fallacy Detector»

I'padiunuii iHTepdeiic KopucTyBaya CTBOPEHO 3 aKIICHTOM Ha MIHIMAII3M 1
NPOCTOTY BUKOpUCTaHHS. OCHOBHI ITYHKTH MEHIO PO3TAaIllOBaHI Ha BEPXHIX MaHEISX
HaBiraiii, 3a0e3ne4yr4H JISTKUH JOCTYII 10 KIIFOYOBUX (PYHKIIIH 3aCTOCYHKY:

— norotun Finder (cropiHka 3 OmMCOM JIOTTYHUX XHO);

— home (momarirHs cTopiHka);

— pricing (cTopiHka 3 OMHUCOM MOJKJIMBOCTEH MpH IUIATHIA a00 OE3KOIITOBHIM
MIiAIUCKAX);

— dashboard (omuc iHCTpYMEHTIB PH TPEMiyM IiIITHUCITI)

— sign out (Buxiz 3 00IIKOBOTO 3aIHCY).

Xoua Fallacy Detector nporonye mieBuil iHCTPYMEHT JIJIsl BUSBICHHS ITUPOKOTO
CIEKTPY MaHIMyJSIIN 13 TpOCTUM 1HTEp(EHCOM 1 MOKIMBICTIO 3BOPOTHHOTO 3B’SI3KY,
HOTO HEJOJIKKA TaKOX CIIil BpaxoByBaTu. Cepesl HUX BIACYTHICTh pO3IMIMPEHOT HaBITamii
9y JOAATKOBUX (YHKIIA JUIsi KacTomizaiii 4yaTy, a TakoXK CEepHo3HI mpoOiemMu 3
aBTOpH3alli€l0 KopucTyBaviB. Taki HeIoiKK MOXYTh yekmagaut UX (user experience)

JUTSL IBUJKUX MIEPEBIPOK TEKCTY 0€3 BXOy B CUCTEMY.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 14

Amnamnis MaHiHyJ'IHTI/IBHOCTi HOBMH 13 BUKOPUCTAHHAM aJ'II‘OpI/ITMiB MAalIIMHHOI'O HaBYaHHS

1.3.2 Gaslight Check

Gaslighting Check — nie onnaitH-cepBic, po3po0ieHHiA JIsi BUSBICHHS Y TEKCTaX

MPOSBIB ra3JalTUHTY i MaHIMYJISTUBHUX BUCIOBIIOBaHb. [InaTdopma ananizye BBeeH1

KOPUCTYBaue€M TOBIJOMJICHHSI 1 BU3HAYa€, YU MICTSITh BOHHU O3HAKH TCHUXOJIOTIYHOTO

TUCKY, MepeKpyuyBaHHs (akTiB ab0 HaB’ A3yBaHHS CYMHIBIB Y BJIAaCHOMY CIPUNHSTTI.

CepBic Hazmae 3pO3yMUIMH BHCHOBOK 13 3a3HAY€HHSM pPIBHS PHU3UKY MaHIMYJSALIN 1

KIacu(iKaIiero BAKOPUCTAHUX TEXHIK [2].

Tabmums 1.2 — Omue Gaslight Check

HazBa Gaslight Check
Po3poonuk GaslightingCheck.com
ApxiTekTypa Client Server

Moga peaJizauii

Python — backend
JavaScript, HTML, CSS — frontend

DyHKIii 1) aHaJTi3 TEKCTIB HA MTPOSBU MAHIMYJIALIA Y HOBUHAX 1 0COOMCTOMY CIIUIKYBaHH];
2) MOKJIMBICTh aHAIli3y TEKCTy, 300pakeHb 1 MPOMOB B aymio abo Bimeo
dbopmarax;
3) Al Coach, mo Hamae mepcoHaNi30BaHi PEKOMEHIAIli CTOCOBHO PO3YMIiHHS
MaHIMYJISTUBHHUX MTATEPHIB;
4) owiHKa piBHSA PU3HMKY MAHIMYJISLIT TS KOXKHOTO TIOBIIOMIICHHS;
5) Bisyauizartist pe3yapTariB y 3pydHoMy ¢Gopmari (CIHCcOK mpodaeMHuX ¢pas,
MiZICBIYyBaHHS TEKCTY).
IlepeBaru 1) focTynHicTh OHJIAWH 0e3 HEOOXIAHOCTI BCTAHOBJCHHS MPOTPAMHOIO
3a0€e3IeUeHH;
2) MOXKITUBICTh aHANII3yBaTH MAHIMYJALIl HE JIKIIIE Y TEKCTOBOMY, a TaKOXK Y
BiZieo i aymiodopmarax;
3) cydacHwid, iIHTYITHBHO 3p03yMisuii iHTepdetic;
4) MOKJIMBICTH MPAIIOBATH 3 PI3HUMH MOBaMH, 110 BUKOPUCTOBYIOTH 30KpeMa
KUPWIHILIIO, TATHHUIIIO.
Henonixn 1)3aHanTo oOMexeHuit moctyn a0 (YHKIIOHANY JUIs KOPUCTYBadiB, IO HE
MAalOTh TUIATHOT MIMUCKH;
2)y IesiKUX BUMAJKax XHOHO BU3HAYAE BUJI MAHIMYISATHBHY TEXHIKY a00 30BCIiM
HE 3HaXOJUTH 1.
BeocaiiT https://www.gaslightingcheck.com/dashboard/check

2025 p.

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 15
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

@ Gaslighting Check ® 20 tokens 3 v

DASHBOARD

Content Check Recent Checks

Q Check
Check text, audio, or images for manipulation technigues and get detailed insights.

AlCoach Beta

OHW Npocpani Hawy 6.0
TEXHUKY, NONOXUNM KY...

Emotional Appeal

Guilt-Tripping

22:50

Analyze the text forany 7.0
signs of manipulation...

@} & @ Demonization Guilt-tripping
Record Audio Upload Audio Upload Image

(Record real-time) (WAV, MP3, M4A) (JPEG, PNG, WebP)

[D Discuss this with Al coach
Manrdarata Awaranace - 9 nattarne dataniar v,

Pucynok 1.2 — Burunsig intepdeiicy 3acrocynky «Gaslight Check»

[arepdeiic kopucTtyBaya € 3pydyHUM 1 MPOCTUM, MpPOTE€ HOTO HE MOXKHA
HaymamroByBaTH. Takox ciif 3asHauuth, mo Gaslight Check mpamoe 3 pisHEMH
pO3MIUPEHHAMH (GaijIiB 1 MIATPUMYE aHaII3 MaHIMYJAMid MNPeICTaBICHUX PI3HUMH
MOBaMH.

Kpim Toro, #oro MokanuBoCTi pa3om 3 gogatkoBum 6orom Al Coach mo3BosioTh
peTebHIIe aHalli3yBaTH HE JIMIIE MaHIMYJISATHBHI TEXHIKH Y cepi HOBHH, a TaKOX B
ocoductoMy chniakyBaHHI. Hampukian, O0oT MoXxe HagaTH BaM IepCOHaATI30BaHI
pEeKOMeH Al 010 CTpaTeTii CHUIKYBaHHS 3 JIIOJUHOIO, sIKa 3aCTOCOBYBaJIa J0 Bac Ti YU
1HIIT1 MpuiomMu, 00 BBECTH Bac y MaHy a0o s BIacHUX iHTepeciB. Ha xkainb, moctymHa
numie OeTta-Bepcis, IO 3HAYHO 3HIKYE €(EKTUBHICTh IHTEPIpHUTAIlli paHile
MPOBEJICHOTO aHATiI3y Ha MPeaIMET MaHIITYJISITIH.

Xoua omnnmaiiH-cepBic Gaslight Check mpononye mmpokuii ciekTp QyHKIii s
BUSBJIICHHSI MAaHINMyJATHBHUX BHCIOBIIOBAaHb Yy TEKCTAaX, 300paKEHHSAX, ayaio- 1
Bimeodainax, mpore #oro iHTtepdenc, Mompu IHTYITHBHY MPOCTOTY, CTPAaKIA€ Bif
B1JICYTHOCT1 MOKJIMBOCTEH HanamTyBaHHsA. KpiM Toro, oOMexxeHui 10CTyn J0 MOBHOTO
(GyHKIIIOHATY JUIsl HETUIATHUX KOPUCTYBAyiB HE JJa€ MOXJIMBOCTI1 Y MOBHIM Mipi OLIIHUTH

SKICTh 3aCTOCYHKY ¥ pOOUTH MpOLIeC BAKOPUCTAHHS MEHII €(DEKTUBHUM.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs

Amnamnis MaHiHyJ'IHTI/IBHOCTi HOBMH 13 BUKOPUCTAHHAM aJ'II‘OpI/ITMiB MAalIIMHHOI'O HaBYaHHS

1.3.3

Fallacy Finder

16

Fallacy Finder — rie onyaiiH-iHCTPYMEHT JIJIsl aHAI3Y TEKCTIB, 10 CHEIiaTi3y€eThCs

Ha BUSBIICHHI JIOTTYHUX XUO 1 MAHIMYJISTUBHUX apryMeHTIB y noBigomiieHHsAX. CepBic

JI03BOJISIE KOPUCTYBayaM BCTABUTH TEKCT a00 3aBAHTAXKUTU YPUBOK JIJISl IEPEBIPKH, MICTS

YOro CUCTEMa aBTOMATUYHO 1€HTU(IKY€E TOMUpPeH1 copi3MH, MTOMUIKM apryMeHTalll 1

HEHAA1H1 PUTOPUYHI NPUHOMU. 3arajioM 3aCTOCYHOK NMPU3HAYECHUN JIJISl aHAJI3Y TEKCTY

13 METOIO BHSIBUTH IMOMMUIIKH, IO JOIMOMOXKC KOpUCTYBAdy 3MiHHI/ITI/I CBO1 APrymMCcHTH "

YHUKHYTH TOITUPEHUX TOMUJIOK y MipKyBaHHsX [3].

Tabauus 1.3 — Onwuc Fallacy Finder

Ha3ga Fallacy Finder
Po3poonuk Word.Studio
ApxiTekTypa Client server

Mosu peaJtizamii

Python — backend
JavaScript, HTML, CSS — frontend

D yHKIii

1) MOKITUBICTE ~ aHATi3y TEKCTy 13 BHKOPHCTAHHSIM Kiacugikarlii
MaHIMYJIAIIHHAX TEXHIK 1 BUAUICHHSM MPOBOKATHBHUX PS/IKIB;

2) MOXKITUBICTD CKOIIIOBATH PE3YJIbTATH aHATI3Y;

3) mpoBeieHHsI aHATI3y KOHTEHTY Ha Pi3HUX MOBaX, 1[0 BKIIIOYAE TEKCTU Ha
KUPWJIUILL, JIATHHUIL | ieporiidu;

4) MOKJIMBICTh BUKOPHCTAHHS CEPBICY 0e3 peecTparlii IIIIXOM BCTaBJICHHS
TEKCTY y MOTPiOHE MoJIe.

5) HafaHHs 3MICTOBHHUX MOSICHEHb II0JI0 MAHIMYISTHBHOT YaCTUHHU TEKCTY,

3BaXar04 Ha KOHTCKCT.

ITepeBaru

1) netajbHUN aHANI3 i3 TOSACHEHHSIMH NPO BHKOPUCTAHI MAaHIMYJIAIIHHI
TEXHIKH 1 IX poJib Y BIUIMBI Ha JyMKY 4MTaya,
2) BizicyTHs moTpeba y peectpaitii abo aBTOpH3aIlil B 3aCTOCYHKY;

3) aHaJIi3 TEKCTY 3a MIMPOKUM CIICKTPOMH MaHIMy/SITUBHUX TEXHIK.

Henoaikn

1) HemMae MOKIIMBOCTI MEPETJISIHYTH paHillle MPoaHali30BaHi MOBITOMIICHHS;
2) BincyTHIl (yHKIIIOHAN T KacToMi3allii po60voro cepeoBHIIA.
3) iHKOJIM OMHUIIKOBO MPHUCBOKOE TEKCTY TEXHIKM MaHIMYISAIil, 1[0 TaM He

3yCTpI4arOThCsS

Be0OcaiiT

https://word.studio/tool/fallacy-finder/?utm_source=chatgpt.com

2025 p.

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 17
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

§ word.studio Tools + Images Resources Login Sign Up

Find fallacies in the following text (paste here)
== & N2

Step 1: Paste any text Step 2: Click or tap the Step 3: Read the results
you would like to “Find Fallacies” button to discover what
analyze for fallacies in to submit the text for fallacies (if any) are

the text box. You can analysis. The results found in the text!

paste up to 10,000 should appear in under Remember to
characters atatime. For 30 seconds. Youcanrun copy/paste the output if
longer text, break it it a few times for varied you would like to save it.
apart and analyze in results. More fallacies It will not be stored
chunks. «can be found.

2

Pucynok 1.3 — Buruisig intepdeiicy 3acrocynky «Fallacy Finder»

Inrepderic Fallacy Finder Bupi3HS€TBCS CBO€K IHTYITUBHOIO MPOCTOTOXO,
JT03BOJISIFOUM KOPUCTyBauaM IIBUAKO aHATI3yBaTH TEKCT O0e€3 HEOOXIAHOCTI peecTparlii.
CepBic MIATPUMYE IUPOKUN CHEKTP MOB, BKJIIOYAIOUM KHUPUIIUIIO, JATHHHUINO 1
iepormidu, 1Mo poOUTh HOTO 3pYYHUM JUIsI MDKHAPOJIHOI ayauTopii. Y CBOIO 4Yepry
JeTaabHI MOSCHEHHS MaHIMYISATUBHUX TEXHIK IOJAIOTh I[IIHHOCTI JIJII KOPUCTYBAYiB, Ki
NParHyTh YJOCKOHAIUTH CBOI apTyMEHTH.

OnHak BiICYTHICTh QYHKIIIN KacToMi3allii i MOXKJIMBOCTI MEPETIsAay MOMEePeIHIX
NEePEBIPOK HAa HASIBHICTh MAHIMYJISIIIA MOYKE JIE0 YCKIATHUTH POOOTY 3 IHCTPYMEHTOM.
Hamnpuxman, xopucTyBadi, mo MOTPeOYIOTh CHCTEMAaTHYHOTO IMAX0oay abo XOdyTh
MOBEPHYTUCSA 0 paHille mepeBipeHoro Tekcty. Kpim Toro, mepiogudHi TOMHIKH Y
BU3HAYCHHI MaHIMYJISITUBHUX TEXHIK HAraayrOTh MPO OOMEKEHHS aBTOMAaTH30BAHOTO
aHajizy.

3arajom, Opyu CBOi CHJIbHI CTOPOHU, TOCTYIHICTh 1 IMUPOKUI CIIEKTp (YHKITIH,
Fallacy Finder mir 6u Oyt me e(peKkTUBHIIMM MTPU HASBHOCTI THYYKOCTI HAJIAIITYBaHb
i1 ocobucToro KabiHeTy 3 icTopiero mepeBipok. Lle cyTTeBo miaBUIMIO 6 ePEeKTHBHICTH
BUKOPHUCTAHHS MIATHOPMH, OCKUIBKH y 1i HUHINIHBOMY BHTJISIZII CEPBIC 3aUIIAETHCS
HEJI0OCTATHHO 3PYYHUM JIJIsi KOPUCTYBAYiB, IO MPAIIOIOTH 13 BETUKAMH BUKOPHUCTAHHS 1

oOcsiraMu TEKCTIB, Jie¢ MOTPIOHO MOPIBHIOBATH PIBEHb MAHIMYJISIIINA 3 PIZHUX JKEPE.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 18

Amnamnis MaHiHyJ'IHTI/IBHOCTi HOBMH 13 BUKOPUCTAHHAM aJ'II‘OpI/ITMiB MAalIIMHHOI'O HaBYaHHS

1.4 AmnaJji3 po3po0/110BaHOI0 3aCTOCYHKY

[HCTpyMEHTH 17151 BUSIBIICHHS MAHIMYJIALINA y TEKCTaX CbOTOJH1 HAOYBarOTh Jeal

OUIBIIOT aKTYyaJIbHOCTI, aJ{kKe THPOPMALIITHUI TPOCTIP NEPETOBHEHHUM MOB1IOMIIEHHAMHU

3 MPUXOBAHUM BIUIMBOM Ha CHPUUHATTS HOBUH 1 MOJITHYHUX MPOLECIB.

Telegram-0ot a1 MOIIYKY MaHIMyJISAIIA MOKHA BUKOPUCTOBYBATH JIJISI IIIBHIKOTO

aHaJIi?)y HOBiI[OMJ'ICHBI JOCTaTHBO CKOITIIOBATH TEKCT a00 nepeciaTtu HOTro 3 6YI[I:>-SIKOI‘O

KaHaly, 100 OTpUMAaTH pe3yibTaTH 3 MiJACBIYCHUMU (PparMeHTaMHU 1 BU3HAUYCHHSIM

TEXHIK, 110 Oynu 3actocoBaHi. /lomatkoBo OOT Hajgae iHPOpMaLil0 MNPO Pi3HI BUAU

MaHINyJAMiM 1 X BU3HAYEHHS, MO POOUTH HOro MPAKTUYHUM I1HCTPYMEHTOM JJis

nepeBipku. Y MaiOyTHhOMY (DYHKI[IOHAJT MOYKHA PO3IIMPUTH 32 PAaXyHOK IHTErparrii

HOBHUX CIICHapﬁB BHUKOPHUCTAHHA. HaHpI/IKJ'IaII, HepCOHaJIi?)OBaHi nmopagn ajisl YHUKHCHHA

MaHIMyJIATUBHOTO BIUTMBY a00 MOKJIMBICTb aHAJI3y MYJIbTUMEIIMHOTO KOHTEHTY.

Tabmums 1.4 — Onuc cucTeMu 1o po3poOIsSeEThCS

OcHoBHi 3a1a4i

1) npuiiom i 06poOKa TEKCTOBUX MOBIIOMJICHD BiJl KOPHCTYBAYiB;

2) knacudikarlis TEKCTY 3a THITAMH MaHIMyJISIIii;

3) mificBiuyBaHHS y TEKCTi MPOOIEMHUX (parMeHTiB;

4) inpopMyBaHHSI KOPUCTyBa4ya MPO MOMUJIKY y BHIAAKY BBEICHHS TEKCTY
HEITPUMYBaHOIO MOBOIO;

5) HagaHHs TOBIAKOBOI iH(OpPMAILii PO BHIX MaHIITYJISIIIM;

6) MOKJIMBICTh TIEPECHIAHHS [TOBIIOMJICHD i3 KaHAIIB 10 OOTY IS aHaIi3Yy.

KopucryBaui 1. kopucTyBay, 10 aBTOpU30oBanuil y Telegram;
CHUCTEMH
Cuenapii po6orn | 1) kopucTyBau BCTaBJIsI€ CKOIMOBAaHUN TEKCT y 4arT i3 OOTOM i OTpHMYe

pe3ynbTaT aHalizy;

2) KOpUCTYBau T[EPECHIA€ IMOBIAOMICHHS 3 OyIb-IKOTO KaHALy [UIst
aBTOMATHYHOI'O aHaJi3y;

3) KOpuUCTyBa4 BBOJHTH TEKCT HEMIATPUMYBAHOK MOBOIK (HANpPUKIIAT,
aHIJIHCHKOI0) W OTPUMYE MOBIIOMIICHHS ITPO OMUIIKY;

4) xopHCTyBa4 TIiClsl aHali3y TEKCTy oOupae (YHKI[IO A8 OTPUMAaHHS
JOBiIKOBOT iH(OpMaIlii Ipo BUKOPUCTAaH1 MAHIMYIATUBHI IPUHOMH .

3aco0m anapaTHoi
Ta MPOrpamMHol
peaJtizanii

1. back-end: Python (Al-monens, NLP-6i0miotekn), Telegram Bot API;
2. front-end: Telegram messenger (iHTepdelic B3aeMoIil 3 KOPUCTYBaYeM);

2025 p.

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 19
AHani3 MaHIMyJATUBHOCTI HOBUH 13 BUKOPUCTAHHSM aJITOPUTMIB MAllIMHHOTO HABYAHHS

manip_bot

Q

el
UL

AHEKAOT gHA:

-CornacHo onpocam B YkpaunHe

= |

YPOEEHL AOESDWA Banepukd 3any=HoMy COCTAaENAeT 102%

-Tak, CTOM, 8 OTKYAa B3ANNCE 2567

-MneHHBIE. 2:31 AM &
LS

Baawk
AHEKAOT AHA: -CornacHo onpocam B YkpanHe ® ypo..

AHanis Ha maHinynauii:

AHEKAOT gHA:
~ -CornacHo onpocam B ¥kpanHe]
= .
i YpoBeHb A0BEPWUA Banepuo 3anyHomy cocTaenfet 102
-l Tak, cTon, @ OTKYAa B3ANUCE 2567
—nﬂEHHbIE‘.

Buaenesi npuidomu:
* AMenawia Ao cTpaxy
* EMOUiiiHO 2afapeneHa MOE3

3MIHWMTK MOBY

JeTani maninynauiia

Pucynok 1.4 — Ilpuknan po60TH 3aCTOCYHKY

PozpoOmtoBanuii Telegram-60T Mae HU3KY TiepeBar y MOpPIBHSHHI 3 IHIIUMU
pIIICHHSIMU:

— 3pY4YHICTh BUKOPHCTAHHS 3a0€3MeUy€eThCS 3aBISKH 1HTETpaIlii B MOMYISIPHOMY
Mecenmxkepi Telegram, sikuii € omMHUM 13 HAWMOMYJSPHIIINX PECYpPCIB CHOKUBAHHS
HOBUHHOTO KOHTEHTY B YKpaiHi. KopucryBauam Tpeba nuIe CKOMOBATA MOTPIOHUH
TeKCT 200 TIepeciiaTi HOBUHY 3 OY/b-SKOT0 KaHAITy 0€3 JOIaTKOBHX JIi Y MEePEX0/IiB Ha
30BHIIIIHI CEPBiCH,

— aBTOMAaTHYHA KJIacHQiKaIlis MOBIMOMJICHHS W MiJICBIYyBaHHS MaHIYJISITUBHUX
¢dbparMeHTiB, 1m0 poOUTH TPOIIEC aHai3y MIBUIKUM 1 3pO3yMLUTUM;

— iHpOPMYBaHHS TTPO TTOMIJIKU Y BUMAAKY BBEACHHS HEMIITPUMYBAHUX MOB, IO

MiABUIIY€E HATIAHICTD 1 TepeadadyBaHiCTh POOOTH;

2025 p. FOxuenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 20
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

Takum yuHOM, OOT 3a0e3medye OUIbII BUCOKY €QEKTHUBHICTh 1 3PYYHICTh

MOPIBHSIHO 3 AIbTEPHATUBHUMHM IHCTPYMEHTAMU aHa13y MaHIMYJISITABHOTO KOHTEHTY.
BucnoBku 10 posainy 1

VY nepmomy po3auni kBaniikamiiiHOI poOOTH MaricTpa 3A1MCHEHO aHai3
MpeIMETHOI 00JIacTi BUSBIEHHS MAHIMNYJIATUBHUX TEXHIK Y HOBUHHOMY KOHTEHTI 1
IPOBEJICHO OIJIAJl HAsSBHUX MPOrpaMHUX pimieHb. [IpoananizoBaHo ixHi QyHKIIOHATbHI
MOKJIMBOCTI, apXITEKTYpHI MIAXOAW, TMepeBard i OOMEXKEHHs, M0 JO03BOJUIO
chopMyBaTy LUTICHE YABJICHHS MPO CyYaCHHWM CTaH 3aco0iB aHai3y MaHIMYJISTHBHOTO
KOHTEHTY i OOIPYHTYBaTH JOIUILHICTh PO3pOOKH BiacHOro Telegram-6ora sik 3py4HOro
il TOCTYITHOTO 1HCTPYMEHTY Ui KOPHCTYBayiB.

[IpoBeneHo neTanbHE MOCHIIKEHHS CHCTEMH, MIO PO3POOIISETHCS, IIITXOM
BU3HAYCHHS KIIOYOBHX (DYHKIIOHAIBHHUX 3aBJaHb, OCHOBHHMX CIIEHApiiB B3aeMoii
KOpUCTyBaya 3 OOTOM 1 pecypciB, HeoOXimHMX s 11 peanizaiii. IIpeactaBieHo
KOHIIEMIIiI0 cTpykTypu Telegram-60T1a 3 ommucomM BUMOT 110 (PYHKITIOHATY 3Ba)KalO4UM Ha
IIPOBEJCHUN aHaI3 3aCTOCYHKIB aHAJOTIB 1 iX HeMOJiKiB. PO3TISIHYTO mepCcreKTHBU
MOTAJTBIIIOTO BJIOCKOHAJICHHS PIMICHHS Yepe3 PO3MIMPEHHS MOXKIUBOCTEH Kiacudikarii
Ta JI0JIaBaHHS HOBHX TUITIB MaHIMYJISIIIH.

3a micyMKaMy TPOBEIEHOTO aHali3y BU3HAYEHO OCHOBHI HAIpPSIMU PO3BUTKY
MPOEKTY 1 c(hOPMYITHOBAHO BHCHOBOK IIIOJI0 HOTO aKTyaJIbHOCT1 M IPAKTHYHOIT IIIHHOCTI
y cdepi aBTOMATU30BAHOTO aHaNi3y TEKCTiB. PO3IMNISHYTI eTamyd TPOEKTYBAHHS 1
JOCTIDKCHHS] € BAXJIWBUMH I TOOYAOBH cTpaterii po3BUTKy Telegram-6ora #
MIAKPECTIOITh MOro TepeBaru 3aBsSKH IHTErpaiii B MOMYJISIPHUNA MECCHIDKEp Ta

JIETKOCT1 Y BUKOPUCTAHHI.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 21
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

2 JOCHIIKEHHSA, MOAEJIOBAHHS I TEXHIYHE ITPOEKTYBAHHSA
2.1 Omnmuc HaOoOpy JaHUX # O3HAK

JJist HaBYaHHS 1 OLIIHIOBAHHS MOJIeNIel Y MPOEKTI BAKOPUCTAHO JaTaceT, HaJaHH
y meskax UNLP 2025 Shared Task on Detecting Social Media Manipulation [4]. HaGip
naHux cdopMoBaHuil KoMmMaHIOK0 Texty.org.ua # MicTUTh (parMEeHTH TEKCTIB
YKpaiHChbKOIO MOBOIO, B3sITi 3 noruciB y Telegram [5]. Jlatacer OyB cTBOpeHHI Ha OCHOBI
peanbHUX TMOBIIOMJIEHb, IO B1OOpakaroTh 1H(OPMALIHHUNA BIUIMB 1 MaHIMYJISATUBHI
NPAaKTUKU B OHJIaH-KOHTEHTI. J{aHi 310paHi 3 METOIO aHai3y MaHIMYJIATUBHUX TEXHIK U
i1eHTH (KA1l PparMeHTiB TEKCTY, K1 MICTATh MaHIITYJISIII.

Koxxen mpukian Oyno aHOTOBAaHO 3a JOMOMOTOI OJHIET a00 KIJTbKOX 13 JECSITH
MaHIMyJISTUBHUX TeXHIK: straw man, appeal to fear, fud, bandwagon, whataboutism,
loaded_language, glittering_generalities, cherry picking, euphoria i cliche. AnoTarito
BUKOHYBaJIH MTPOQeCiifHi KYypPHATICTH, aHAJITUKH i MeIiaeKCIIEPTH, 110 B TEOPii TOBUHHO
rapaHTyBaTH BHUCOKY SIKICTh PO3MITKU. BomHouac HaOip XapaKTepU3YETHCS CYTTEBOIO
JTUCTIPOIIOPIIIEI0 MK KJIacamu, 110 YCKJIAIHIOE O0Y10BY 30a1aHCOBAHUX MOJIEIIEH.

Jnst mobynoBu mojeneit Oyno BUKopucTaHo ¢ain train.parquet. OriHIOBaHHS
pe3yiabTaTiB 3MIMCHIOBAIOCH Ha OQiiiHOMY TecToBOMy HaOopi (test.csv) 3
BUKOpUCTaHHSAM MeTpuku Macro F1. 3aranbna cTpykTypa ¢aiiiniB 3a miIMHOKIHAMU:

Tabmumsg 2.1 — Onuc miaMHOXUH BUKOPUCTAHUX HA PI3HUX CTAIsIX HABYaAHHS

ITinMHOKHHA KinbkicTh npukiaaais
Hapuanbpha 3248

Bamimaniiina 574

TecToBa 5735

3aranpHa KUIbKIicTh ciaiB | 805730

VHikaJIbpH1 ciI0Ba 146410

iaboBi 3minui. I[liUThOBUMH 3MIHHUMH B IIbOMY JOCHIIKCHHI € TIOJS
manipulative mis moxeni knacudikarii i techniques mist span-detection:

— MaHIMyJATUBHICTh OBIOMIIEHHS (manipulative) — OiHapHa 3MiHHA, sIKa TTOKa3ye
YU MICTUTH TOBIJOMJICHHS O3HAKM MAHIMYJALIl. 3HAa4YeHHS true O3Hadae, M0 y TEKCTI
MIPUCYTHI MaHIMYJISITUBHI eJ1eMeHTH, false — 1m0 noBigomiieHHs HeiTpanbHe. Lle no3Bossie

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 22
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

CTaBUTH 3aBJIaHHs O1HAPHO1 KiIacuQiKallii 1Jig MOJENeH;
— MaHIMyJATUBHI TeXHIKM (techniques) — CHOMCOK 3aCTOCOBAaHMX METO/IB

MaHIinyJsii, Takux sk "loaded language", "cherry picking", "euphoria" # inmi. Koxue
MOBIIOMJICHHST MO€ MICTUTH KiJIbKa TEXHIK OJIHOYACHO abo 30BCIM HE MICTUTH
MaHIMyJIAIIH;

Y pesynbTaTi aHajizy KOPUCTYyBad OTPHMYBATHME pE3YJbTaT Ha MPEAMET
MaHIMmyJsiii 6epydu 10 yBaru BUIlle3a3HaAYCH]1 3MI1HHI.

Onuc o3Hak. Jlatacer MICTUTh 6 OCHOBHUX O3HAK, SIKI MICis OOpOOKU Jis
kateropianbHux 3minaux (lang, manipulative). 3aranbHa KiTbKICTh 3alKMCIB CTAHOBUTD
3822, xoxkeH 13 AKUX BiAMOBiAae ogHOMY ToBigomiieHHIO 3 Telegram. O3Haku MOKHA
PO3MOJIUTUTH HA YMCIIOBI M KaTeropialibHi, a iXHIM OMKUC HaBEIEHO HUKYE:

—id — yHiKaJibHUH iIeHTU(IKATOP KOXKHOTO MOBIAOMIICHHS. BHUKOPHCTOBYETHCS
JUTsl OHO3HAYHOT'O MOCHIJIAHHSA Ha KOHKPETHUH TEKCT y nataceTi abo mpu o0’ eaHaHHI 3
HIIUMU JKEpPETaMy JIaHUX;

—content — TekcT moBiAOMIIEHHA. MICTUTh KOHTEHT KOPHUCTYBayiB, SIKUN
aHaAJI3y€eThCsl Ha HAsSBHICTh MaHIMyJsmik. JloBXMHA W CKJIAAHICTE TEKCTY MOXKYTh
CYTTEBO BapilOBATHCS, 110 BaYKJIIMBO BpaxoByBaTu mpu miarorosmi mo Natural Language
Processing (NLP) mozeneii (TokeHizarist, Bektopu3aiisi, embeddings) [6];

— lang — MoBa noBigoMIICHHS. 3HAYCHHS MOKYTh OyTH «UK» /I yKpaiHChKOT a00
«ru» musa pociiicekoi. Ll o3Haka m03BONSE TPOBOJAWTH MYJIHTHUMOBHHH aHami3 1
ajanTyBaTH aJrOPUTMH OOpPOOKHM TEKCTy IIJI KOHKPETHY MOBY, BpPaxOBYIOYH
MOPGOJIOTIYHI ACTICKTH;

— manipulative — 6irapHa minboBa 3MiHHA. J[03BOJISIE OTHO3HAYHO KIIACU(IKyBaTH
MTOBITOMJICHHS SIK MaHINYJIATHUBHI a00 HEHTpaIbHi;

— techniques — cicok TeXHiK MaHIITyJIAIIT, 3aCTOCOBAaHUX y MOBiAOMIICHHI. Moke
MICTHTH OJWH a00 JIeKiibKka eleMeHTiB. Ko)kHa TexHiKa ONMHCye Crenu(iaHuid mpuiioM
BIUTUBY Ha aynuTopito. /(s Mojeneil MammmHHOTO HaBYAHHS TEXHIKA MOXYTh OyTH

3aK0JI0BaH1 y BUTJIAI1 O1HAPHUX O3HAK JJIs1 0araTOMITKOBO1 KiacuQikaliii;

— trigger_words — criucok MicIlb y TEKCTI, JIe 3HaXOIAThCs CiIoBa abo ¢pasu, mo €

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 23
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

TpurepHumu. [lo3uuii npeacrasieni y BUIIAAl nap 1HAEKCIB [start, end], mo no3Bossie
TOYHO BHU3HAUaTH Micle BIUIMBY B TekcTi. [loxin iHdopmarlii 10 BuUIE3a3HAYEHOTO
BUTJISTY KOPUCHUU JIUIs 3aBaHb Span-detection.

[lepen HaBuaHHSM MOJENEH TEKCTH MPOXOASATh PETENbHY OararocTyrneHeBy
MIJTOTOBKY B MEXKax €JJMHOT0 THYYKOTI0 KOHBeepa 00poOku gaHuX. BxigHi Habopu 1aHuX
Mictuiu 3822 mpuKIIaIiB JIs TpeHyBaHHs 1 5735 mpukiaiB A1l TECTyBaHHS y (popMaTax
parquet 1 CSV. Ha moyaTkoBOMY eTarni OpUriHajJbHUN TpEeHyBalbHUN HaO1p OYB NOAUIEHUN
Ha 85% TpenyBasbHUX 1 15% BamimamiiHux NIABUOIPOK 13 BUKOPUCTAHHSIM
cTpatudikamii 3a MITKaMM MaHIMyJsMid 1 (ikcoBaHOro 3HaueHHs seed=42, 1m0
3a0e3MeuyBalio BiITBOPIOBAHICTh y MeXax 000X 3aBIaHb [7].

Takox 3acTocoByBanacs yHi(ikoBaHa MpoIeaypa HOpMaTi3allii TeKCTy: 3aMmiHa
URL-ampec na cnemianbuuii Token «[URL]», HOpMmamizaiiiss mpoOiniB, 3amoBHEHHSI
BIJICYTHIX 3Ha4€Hb, & TAKOXK aBTOMATHYHE BU3HAUCHHS MOBH.

TakuM ywHOM, TIpolleC MIATOTOBKM JaHUX BKJIIOYAE 0OaratocTyleHEBY
HOpMaJTi3allito TeKCTy. Bukopucranss crpatudikarlii mpu moaiyi TpeHyBaJbHOTO HA00PY
Ha 85% TpeHyBabHUX 1 15% BamimamiiHux mpuKIaaiB 3a0e3Medio BIITBOPIOBAHICTh
pe3yiabTaTiB, 3aKJIaJlaloul MIIHY OCHOBY Jisd €()EKTUBHOI'O HAaBYAHHS MOJCICH 1

II0JI0JIAaHHS BUKJIMKIB, ITIOB’ A3aHUX 13 AUcOaJIaHCOM KIIaciB.
2.2 Orasa MeToaoJorii i miaxoaiB A1 HABYAHHA MoOJeJIel

st oTpuMaHHS BHCOKHMX TOKa3HHKIB Tepen0adeHb CTOCOBHO Kiacudikarii i
3HAXO/KEHHS SPan-iB MmoTpiOHO MpoaHami3yBaTH MIAXOAW MANITUHHOTO HaBYaHHS W
0co0IMBOCTI (YHKIIOHYBaHHA Jeakux Mojened. OIliHka IpOBOAMIIACH 3a MaKpo-
MOKa3HUKAMHU:

— precision — yacTka NpaBHILHO BU3HAYCHHUX IMO3UTUBHUX TMPUKIIAIIB CEpell YCiX,
SKi Mojaenb KiacuikyBayia sSK ITO3WTHBHI. [HIMME cioBamu, Precision oIliHIoe,
HAaCKUIbKU Mepea0adeHHs € KOPEKTHUMH;

—recall — BimHOImIEHHS MNPaBWIBHO 3HAWICHWUX TO3UTHBHHUX MPHKIAIIB O

3arajibHOi KUIBKOCT1 JIMCHO MO3UTHUBHUX. 3arajioM XapakTEepU3ye 3JaTHICTb MOJEIi

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 24
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

BUSBIIATH PEJIE€BAHTHI BUIAJIKH;

— F1-score — rapmoHniiine cepenHe Mix precision i recall, sike oco611MBO KOpUCHE
111 He30aJaHCOBAaHUX JaTaCETIB;

TakuM 4MHOM, HaBEJE€Hl METPUKH JIal0OTh 3MOTy 00 €KTHBHO MOPIBHATH MOJENI 1
BU3HAYUTH, SIKa 3 HUX HaWKpalle BIOPAETHCSA 13 3aBaHHAMM Kilacuikalilii 1 BUAUICHHS

span-is.
2.2.1 Amauiz Machine learning models

Machine learning (ML) models 3acTtocoByroThcst sik 0a30BH MiAXiA IS 3a1ad
kiacudikarii TeXHIK MaHITyJISI14 1 BU3HAYeHHS span-iB. 111 moaeni qoOpe miaxoasTh s
CTBOPEHHSI PENPE3CHTATUBHUX 0Aa30BUX pillleHb, IIBUJKUX PE3YJbTATIB 1 € BIAHOCHO
IPOCTUMH JJis iHTeprperairii. BogHouac BOHM OOMEXeH1 y 3aXOIUICHHI CKJIAIHUX
KOHTEKCTYaJIbHUX 3aJIe)KHOCTEH y TEKCTi, OCOOJMBO SKIIO MOTPIOHO MpaloBaT 3
JOBIUMU ab0 HeiHiiHI 3B’ 13kaMu Mixk ciioBamu. JlJo ML models moxna Bigaectn Linear
Support Vector Classification (SVC), Complement Naive Bayes (CNB), Logistic
Regression (LR), Random Forest (RF), Gradient Boosting (GB). VYci Bumie3a3naueHi
MOJIe1 JEMOHCTPYIOTh HACTYITHI pe3yJIbTaTH B 3ajauyax Kiaacudikamii (puc. 2.1) i span-

detection [8].

Classifier Precision Recall F1 Score
Technique Classification
ML Models
LinearSVC 0.3543 02878 03102
CHNE 0.2680 02818 0.2553
LE 0.2807 05433 0.3291]
RF 0.5688 . 10610 0. 13059
GB 0.3926 01423 0. 1846

Pucynok 2.1 — Pe3ynbrart 3actocyBaHHs MOJeNeH B 3a7a4i kiacudikarmii

Linear SVC 3a3puuaii n1oOpe mpairoe 3 pospimkenumu marpuisima TF-IDF i
3JIaTCH 3aXOILII0BATH JIOKAIbHI Kopesiii Mix ciioBamu [9]. [Tix wac TecTyBaHHS 1MOKa3aB
CepeIHIO0 TOYHICTh 1 HU3bKUH recall — Mojens JeMOHCTpYye akypaTHICTh Y BU3HAUYEHHI

MO3UTUBHUX MPUKIAAIB. 3arajioM ii mepegdOavyeHHsl MepeBaXHO MpPaBUJIbHI, aje BOHA

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 25
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

MPOITyCKae 0araTo CrpaBKHIX MO3UTUBHUX BUIAIKIB, 1110 3HHKY€E TOBHOTY KJIacH(iKallii.
Taka mnoBexinka mnoB’s3aHa 3 TuM, 1O SVC onTumizye TiNEpIUIOMIUHY IS
MaKCHUMAaJIbHOT'O BIJIJIUICHHS KJIACiB, ajieé HE 3aBXU BPaXOBY€ HEPIBHOMIPHUN PO3MOILI
KaTeropii 1 CKJIaJIHI CEMaHTUYH1 3aJIe)KHOCT1 M1’k CJIOBaMHU B TEKCTI.

Complement Naive Bayes, HaBmaku, IpoJeMOHCTPYBaB HU3bKI 3HAUYEHHS YyCIX
METPHK, 110 MIAKPECTIOE HOro oOMEXEHY 3[aTHICTh MpalfoBaTh 3 0araTOMITKOBUMH
3aJlayaMyd TpU HAsBHOCTI JaucOanaHCcy KiaciB. AJNroputMm 0a3yeTbCs Ha MPOCTIH
NMOBIpHICHIM MOJIeN, siKa Tiepeadadae He3alIe)KHICTh O3HAK, 110 HE BIINMOBIIA€ CKIAAHIN
IPHUPO/Ii TEKCTOBHX JIAHKX, JIC CJIOBA B3a€MOTIOB’sI3aH1 i KOHTEKCTYaIbHO BINTMBAIOTh HA
3HaueHHs onxuH oxHoro [10]. ¥V pe3yabrari Monmedb YACTO TOMHJISIETBCS Y
0araTokjacoBUX MpUKIALax 1 He 3abe3nedyye aaeKBaTHOTO MOKPHUTTS BCIX TEXHIK
MaHIITyJISIH.

VY Toit)xe yac Random Forest moka3aB mayke BHUCOKHMA piB€Hb TOYHOCTI, MIO
TOBOPUTH MPO May KUTBKICTh TOMUJIOK TIPHU Niepea0avdeHH Mo3uTUBHOTO Kiiacy. He cin
3a0yBatu mipo recall, skuii MmaB kaTacTpodiyHO HM3bKI 3HAYCHHS. [3 BHIE3a3HAYEHOTO
BUIUIMBAE, 10 MaiKe BCl MO3WUTUBHI NMPUKIAAM 3aJUIIAIOTHCS HEMOMiueHUMH. Taky
MOBEJIIHKY MOXKHAa OOIpyHTyBaTH apxiTekTyporo Random Forest moOymoBaHor Ha
ancamOmi pimens gepeB [11]. YUepe3 mio 0COOIMBICTE MOAEIb 3aHAATO CHIIBHO
CKOHIICHTPYETHCS» HA THX O3HaKaX, sKi HalyacTillle BU3HAYaIOTh MPABUIBHUM KIac,
ITHOPYIOYM MEHII OYEeBUJHI CUTHANMHM. BuiezasHaueHa oOCTaBUHA NPU3BOJIUTH JI0
MPOITYCKY MEHIII YaCTUX MAHIMyJIATUBHUX TEXHIK, SIK1 3HAXOISITHCS B AATACETI.

Gradient Boosting mpamroe momiono mo Random Forest: momens Hamaraerbcs
KOPUTYBAaTH TIOMMJIKM TIOTIEPENHIX JepeB, M0 MABUIIYE TOYHICTh JEAKUX
nepenoadeHs [12]. HasBHuii HaOip JaHUX XapaKTepHU3YEThCS OOMEKCHUM HaBUATHHHM
Ha0OPOM 1 BEJIMKOK KIUTBKICTIO KJIAciB, IO BIMBAa€ Ha HU3bKWH mokasHWK F1 Score i
BIJICYTHICTIO CyTTe€BOTO TIoKparnieHns recall.

Taxum urHOM, T 330241 Kitacudikanii ML models moxyTh OyTH KOprCHUMU JTSI
CTBOpPEHHSI 0a30BOTO PIMICHHS, /¢ HEOOX1JHO BIICIATH SBH1 HETaTHMBHI a00 MO3UTHBHI

MPUKJIa1, a00 MPOBECTH MOMNEpeaH1N aHai3 nanuX. OHaK IXH1 OOMEKEHHS MOJIATraloTh

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 26
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

y HE31aTHOCTI 3aXOIUII0OBATH CKJIaJIHI CEMAaHTHYHI 3aJIEKHOCT1, JIOBT'1 KOHTEKCTH, & TAKOXK
y mpobnemax i3 OamancyBaHHsiM precision i recall. Bumesasnadyeni Hemoniku €
KPUTUYHUMHU I OaraToMmiTkoBOi Kiacu@ikamii 3 OaraTbMa pI3HUMH TEXHIKaMH

MaHIMyJISIIH.

Span Identification

ML Models
LinearSVC 0.4020 0.3921 0.3970
LR 04169 0.3578 0.3851]
MNB 04169 0.3578 0.3851
lightGBM 0.3599 0.4794 04112

Pucynok 2.2 — Pe3ynbraT 3actocyBaHHs Mojelici B 3amayi Span detection

Jlns 3a7a4i span-detection curyarrist aerio BiApisHAeThCA. Y 1IboMY BHMaaky ML
models npairroroTh Ha piBHI TOKeHIB. OCHOBHA 3aj1a4ua MOJISITa€ Y MOMITYKY MOYATKY 1 KiHIIA
span-iB, e HasgBHI MaHinyasTHBHI (parmentn Tekcty. Linear SVC 3HOBY
POJEMOHCTPYBaB BiIHOCHO 30a1aHCOBaH1 MOKa3HUKH Precision i recall, o poouTs itoro
OinpIn mepenbadyBaHUM IpH poOOTI 3 oKpeMuMH TokeHamu. Logistic Regression i
Multinomial Naive Bayes moka3zain oaHAKOBI pe3yabTaTH: BHCOKY TOYHICTH 1 TPOXHU
amwkunii recall. 3aragom Bonu m00pe iAeHTH(IKYIOTH TOKEHH, SIKi TOYHO HAJIEKATh 10
span-y, aje AesKi CIpaBHi TOKCHH 3aJUIIAI0THCS HEBUSBICHUMHU.

LightGBM Bin3nauunscs Hatikparum F1 Score cepen ycix MLmodels y BukonanHi
span-detection. OcHoBHa Horo mepeBara — Bucokmid recall, skwii mo3Bosisie 3HaWTH
OUTBIIICTh MAHIMYJISTUBHUX TOKEHIB, HaBITh SIKIIO II€ CYMPOBOKYETHCS 3HUKCHHSIM
TOYHOCTI 4Yepe3 XWOHOMO3UTHBHI TepembaueHHs. OcoONMBICTH MOJEl BimoOpaxae
MPUPOAHY 37ATHICTh TPAIIEHTHOTO OYCTHHTY BPAaXOBYBATH CKJIAJHI B3A€MO3B’ 3K MiXK
O3HAKaMH, MPOTE CIIOCTEPITAETHCS MEHIIIA CTA0UTBHICTh Y MUTAHHIX TOYHOCTI KOPOTKUX
a00 HediTKUX KOHTeKCTiB [13].

3araiiom s span-detection ML models nemoncTpyroTh momipHy eheKTHBHICTB:
BOHM 3JIaTHI 3aXOILIIOBATH JOKaJIbHI KOHTEKCTH M JEsIK1 IMOCIIJOBHOCTI TOKEHIB, ajle HE
MOXYTh IMOBHICTIO BIATBOPUTH CKJIAIHI CHHTAKCHYHI i1 CEMaHTUYH1 3aJIEKHOCTI B TEKCTI.
[x BUKOpHCTaHHS 0OMEXYEThCS MPH JAETATBHOMY PO3Mi3HABAHHI MaHIMyALil Ha PiBHi

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 27
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

KOHTEKCTY 3BakalOuMd Ha BHINl€3a3HAuYeHl NMpUYuHU. Mojeni Oulblle MiAXOISTh JIs
IIBUAKOTO MPOTOTUIIYBAHHSA 1 OIIIHKA €(QEeKTUBHOCTI MNPOCTHUX O3HAK, HDK JJIs
BUCOKOTOYHUX CHUCTEM BHSBICHHS MAaHIMYJSIINA, J€ Ba)XJIMBa IMOBHOTAa M TOYHICTH

OJHOYAaCHO.
2.2.2 Amauai3 Deep learning models

Jnst 3agad kiacudikamii TEXHIK MaHIMYJSIIN 1 iAeHTUdIKalii span-iB y TEKCTI
Oynu 3acTocoBaHl pi3HOMaHITHI apxiTektypu Deep Learning (DL), siki 703BONSIIOTH
MO/IeJI1 3aXOTUTIOBATH CKJIQJHI CEMAHTUYHI i KOHTEKCTYalbHI 3aJI€)KHOCT1 MK CJIOBaMHU.
Ha BigMiHy Bix TpaauiiiHuX Mojened MamuHHOro HaBuanHs, DL Mopeni 3maTHi
e(hEeKTUBHO IHTErpYyBaTH SK JIOKAJIbHI MATEPHU, TaK 1 JIOBFTOCTPOKOBI B3aEMO3B’SI3KU B
TekcTi. [lg pi3HUIS KpPUTHYHO BaxyMBa Uil 0araTOMITKOBUX 3a7ad 1 3aBJaHb
MOCJTIZIOBHOT PO3MITKH.

Jns xinacudikaili TeXHIK MaHINYJIAMiA BCl BXITHI TEKCTH MPEACTABIUIUCS Y
Burisaai 300-Bumipaux BPEmb cyOGcnmoBHUX emOemiHTiB, IO J03BOJISE TpAIfOBaTH

HABITh 13 PIIKOBKUBAHUMHU CIIOBAaMH, CKOPOUCHHAMH i moxigHuMu popmamu [14].

DL Models
CNN 0.2949] 0.3287 02816
CNMN+LSTM 03125 03388 03077
CNN+BiL5STM 0.3403 0.3443 0.3252
CNMN+GRU 0.3649 03087 03179

Pucynok 2.3 — Pe3ynbrart 3actocyBanHs MOJieNel B 3a7aui kiacudikarii

Ha npakrumi 6azosa Convolutional Neural Network (CNN) moxens mocsiria Fl
Score = 0.2816, precision — 0.2991, recall — 0.3287. Pe3ynbTaTsi cBiTuaTh PO XOPOIIHIA
MOIIYK TEBHUX O3HAK MAHIMYJSAIINA, MPOTE 3AaTHICTH TOYHO PO3PIZHATH BC1 TEXHIKU
oomexxena [15]. OcHoBHOro mpuumHOO € Te, mo CNN g00pe 3aXOILIIOE JIOKaIbHI
MaTepHU, aje HE BPAXOBYE JOBTOCTPOKOBI 3aJICKHOCTI MK CJIOBAMHU, 10 BAXXJIUBO TSI

pO3Mi3HaBaHHS CKJIQJIHUX MAHITYJISTUBHHUX CTPYKTYp [16].

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 28
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

Jliis BupimeHHs 1iei mpooaemu Oynu po3poodieHi riopuaai CNN-RNN (Recurrent
Neural Network) apxitektypu, 1e CNN BUIUISIE JIOKQJIBHI 03HAKH, @ PEKYPSHTHI AP —
Long Short-Terrm Memory (LSTM), Bidirectional LSTM (BiLTSM) i Gated Recurrent
Unit (GRU) — iHTerpyroTh KOHTEKCT y Mexkax ychoro Tekcty [17]. Hampukman,
CNN+BiLSTM 3 nBoma mapamu no 256 omunuib Ha Hanpsmok (forward — o6poOka
MOCIIZOBHOCTI 371iBa HampaBo, backward — y 3BOpOTHOMY MOpPSIAKY, IO JO3BOJISE
BPaxOBYBaTH SIK MOTIEPE/IHIM, TaK i HACTYITHUI KOHTEKCT) mokasana: F1 Score — 0.3252,
precision — 0.3403, recall — 0.3443, mo kpamie HbK y 0a3oBoi CNN [18]. Iurra
koHpirypauigs, CNN+GRU, nocsarna naiBumoro F1 Score cepen DL moneneit ans
kinacugikamnii — 0.3179, i3 precision — 0.3649 i1 recall — 0.3087 [19]. [Toka3HuKH METPUK
HiITBEP/DKYIOTh, IO J0JAaBaHHS PEKYPEHTHHUX KOMIIOHEHTIB JO3BOJISIE MOJENI Kpalie
IHTerpyBaTu 1HGOPMAIIII0 TPO TOPANOK CIIB 1 KOHTEKCT, HIO MIABUIIYE 3arajbHy

e(heKTUBHICTh OAaraToMiTKOBOI Ki1acu(iKaIrii.

DL Moudels
CMNMN 0.2596 08715 04001
CNM+LSTM 0.2566 09187 04012
CNMN+BILSTM 0.2878 08126 D.4251]
CNMN+BiGRLU 0.2949 0.8023 04313

Pucynok 2.4 — Pe3yabTat 3acTOCyBaHHS MOJeIIei B 3a1a4i Span detection

s 3amaui span-detection DL Mozeni IeMOHCTPYIOTh iHINY auHaMiKy. BXimHi
mocaigoBHOCTI peacTaBisncs y Burisiai 100-sumipanx BPEmb em6eninris 3 50.000
TOKEHIB, 110 fine-tune-miucs mig yac HaBuaHHsI. MakcuMaiabHa TOBKHHA MOCIIOBHOCTI
cranoBmia 384 cy6cnoBa, a CNN ciayXuB ciibHUM (POHTEHAOM, TTOYATKOBUM IIIAPOM
st 0OpOOKM O3HAaK 13 TEKCTy, JUISl BCIX apxXiTekTyp span-detection. Bin maB Tpu
napanenbHi Conv 1D mapu 3 supamu 3, 5 ta 7, koxHuit o 128 ¢inerpis, Rectified Linear
Unit (ReLU) akruBamietro 1 padding mns 30epexeHHs JTOBXHHA. Dropout
BUKOPHUCTOBYBABCSI HA MOYATKY M MICJIS KOHKATEHallll BUXOAIB IIapiB, 1100 3MEHIIUTH

IICPCHABYAHHA.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 29
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

V¥ TectyBanHi 6a3oBa CNN noka3zana ayxe Bucokui recall — 0.8715, mo Bka3ye Ha
3HaIeHy OUIBLIICTh peaibHUX span-iB. Y Toi ke yac precision OyB auie 0.2596, mo
CBITYUTH PO 3HAUHY KUIBKICTh XMOHOMO3UTUBHUX NepeadaueHb. Pe3ynbratu € noBani
ouikyBaHUMH, OCKUIbKH CNN pgo0Ope BuUSIBIS€ JOKaJbHI O3HAKU. Y MPOTUBArY
BHUIIE3a3HAYCHOMY MOJIeJIb HE BPaxOBY€ MOBHUN KOHTEKCT ITOCIIZIOBHOCTI, Yepe3 IO
YacTO MOMMJIKOBO BITHOCUTH CYC1JIHI TOKEHHU JI0 span.

JlonaBaHHS PEKypPEHTHUX IIapiB 3HAYHO MOKpalIWIo OajlaHC MDK precision i
recall [20]. Takum unnom CNN+BIGRU nocsirina F1 Score — 0.4313, precision — 0.2949
i recall — 0.8023. Moeinb OBl TOYHO BUIAUIIE SPAN-U, 3MEHIIYIOYN XHOHOMO3UTHBHI
nepeadavYeHHs, MpU I[bOMY 30€piraloud BUCOKY 3JIaTHICTh 3HAXOJUTH peaibHI Span-u.
[ToxioHa TenaeHiist crioctepiranacs takox y CNN+BIiLSTM (F1 Score — 0.4251), mio
HiATBEP/KYE €PEKTUBHICTh BUKOPUCTAHHS JBOCTOPOHHIX PEKYPECHTHUX KOMIIOHCHTIB
JUTSL IHTETpallii KOHTEKCTY IIPH 3aBJaHHSAX TOKEH-JIEBENl PO3MITKH.

[TepeBarn Deep Learning apxXiTeKTyp OYEBHMIHI: BOHHU 37aTHi MpAIOBATH 3
cyOCIIOBHMUMH eMOeIiHraMu, e€(eKTHBHO IHTETPYBaTH JIOKAIbHI ¥ r100ajbHI O3HAKH,
BpPaxOBYBaTH IMOPSIOK CIIIB 1 KOHTEKCT, aJanTyBaTUCS 10 0araTOMITKOBUX 3aBAaHb 1
OCIi10BHOT po3miTku [21]. BoaHouac icHYIOTh IIEBHI OOMEKEHHS: TOTpeda y BEIUKHX
o0csirax HaBYAJIBHUX JaHUX, BUCOKA OOYMCIIIOBAJIbHA CKIAIHICTh, PU3UK NIEpECHABUAHHS
IIPY HEBEJTMKOMY HAOOpIaHUX, a TAKOXK CKJIAJIHICTh IHTEpIpeTallii nepeadaueHp.

I3 aHanizy pe3yapTaTiB TECTYBaHHS MO>KHA 3pOOUTH BUCHOBOK, 1110 B IiIoMy, Deep
Learning moka3ye 3HAYHMI TMOTEHIlIAT VY 3aBAaHHSAX IHTErpaiii KOHTEKCTYy 1

OaraToMiTKOBOI iH(popMaIlii B TekcTi mopiBHsHO 3 ML models.
2.2.3 Amnadxi3 Transformer models

Jlns BUKOHAHHS 3aJ1a4 Kiacu(ikarii TeXHIK MaHIMyJIIid, ineHTudikamii span-iB y
TEKCTi OyJIM BUKOPUCTaH1 OTIepeIHb0 HaB4YeH1 Transformer-moperni, siKi JI€MOHCTPYIOTh
BHCOKY €(DeKTHUBHICTh Y POOOTI 3 MPUPOJHOI0 MOBOIO 3aBassku MexaHi3my Self-attention.
Self-attention m03BOJIIE MOJIEII BPaXOBYBaTH B3a€MO3B’S3KH MK KOXXHUM TOKCHOM Y

TEKCTI 1 BCIMa IHIIUMH TOKSHAMH, IO Ja€ MOXKJIMBICTD 3aXOILUIIOBATH K JIOKaJIbHI, TaK 1

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 30
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

r7100aabHI KOHTEKCTYallbHI 3ayiexkHoCTi [22]. Taka B1acTUBICTH OCOOHMBO LIHYETHCS B
000X 3aBIAHHSAX, OCKUIBKM KiacHQIKalis 1 po3MiTKa span-iB BUMararmTh YyBaru [0
TOHKUX CEMaHTUYHHUX JeTalied 1 B3a€EMO3B’S3KIB y TekcTi. YacTto mpocTi momeni
MalIMHHOrO a00 HaBiTh TJIIMOOKOTO HAaBYaHHA HE MOXYTh BpaxyBaTH IOBHICTIO
BUIII€3a3HAYCH] ACTIEKTH.

Byno o0paHo HH3KY MOTYXHHMX OaraTOMOBHHMX Mojenel 3 0ibmioteku Hugging
Face. OcuoBui moxeni Bkmodarn MDeBERTa v3 Base, InfoXLM Large, XLM-
RoBERTa Large, BERT Multilingual Base, a mis knacudikaiiii ykpaiHChbKOTO TEKCTY
TAKOK 3acTocoByBajacs cmemianmizoBana UKr-Roberta-Base. [Ins span-ie
BUKOpUCTOBYBaBcst MTS Base, sikuii 103B0JIsI€ MOCTIOBATH 3aBIaHHS SIK TIOCJI1IOBHICTh
renepairii. L{s oco6muBicTh 1oMIoMarae TOYHiIIe BUSHAYATH MOYATOK 1 KIHEI[b Span-is..

ApxiTekTypHo Bci Momeni Transformer cknanmaroThest 3 0Oarathox miapiB, sKi
JI03BOJISIIOTH OIIIHIOBATH BaKJIMBICTh KOYKHOTO CJIOBA BIAHOCHO BChOro TekcTy [23]. s
ajanTarii 10 KOHKPETHHUX 3aja4 J0 HUX JoJaBayid crerianbHi «romoBu» (heads): ms
kiaacudikaiii — aiHiiHi mrapu 3 Gaussian Error Linear Unit (GELU) aktusariero ta multi-
sample dropout st miaBUINIEHHS CTIHKOCTI Mepe mepeHaBYaHHsIM; I Span detection —
token classification heads i3 cxemoro BIO (Begin, Inside, Outside) mis mapkyBaHHS
MIOYaTKy, MPOJOBKEHHS 1 HE SPaN TOKEHIB.

[Tepen mopiBHAHHAM MoOJIeNIel TaTaceT MPOXOAUB MiAroToBKY: Bumaxsiaucs URL,
3aiiBI MmMpoOLIM, TPOBOAMIIACH TOKEHi3amis SentencePiece, yci mOCIiZOBHOCTI
BHUpiBHIOBAIKUCS 110 512 TokeHiB. 1Sl MiABHUINEHHS CTIHKOCTI MOJCHI 3aCTOCOBYBAJIOCS
BHITQIKOBE BUajaeHHs ciiB (rate 0.3), a qucOanaHc KiaciB KoMIleHcyBaBcs depe3 Focal
Loss a6o Binary Cross Entropy 3 Baramu kiaciB [24]. Takox BukopuctoByBanucs label
smoothing i Layerwise Learning Rate Decay, mo 3HWXyBajo HMOBIpHICTh HaAMIPHOT
BIICBHEHOCTI MOJEIi y TPOTHO3aX 1 3a0e3nedyBajio CTaOUTbHE OHOBJICHHS

rpajieHTis [25].

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 31
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

Trarsformers
mDeBERTa V3 Base 0.3453 0.5055 0.3001
InfoXLM Large 03855 05477 04451
XLM-RoBERTa-large 03917 05667 04498
BERT multilingual base 03710 03930 03772
Ukr-Roberta-Base 03657 0.4366 0.366(0

Pucynok 2.5 — Pe3ynbrar 3actrocyBaHHsl MOJienel B 3a7a4i Kiiacudikarii

Pesynbratu TectyBanHs Transformer-mogeneii s kimacugikaiii - TeXHIK
MaHIMyJISIIH JEMOHCTPYIOTh 3HaUHE MOKpalieHHs y nopiBHsHHI 3 DL 1 ML monensmu.
XLM-RoBERTa-large noka3zana F1 Score — 0.4498, precision — 0.3917 i recall — 0.5667,
10 € HaWKpaIUM pe3yIbTaToOM cepel ycix mporecToBanux mojaeieit. INfoXLM Large
nocsirma F1 Score — 0.4451, precision — 0.3855 i recall — 0.5477. mDeBERTa V3 Base
TaKOX MPOJEMOHCTpYBaja no0puii Oamanc mix precision i recall (F1 Score — 0.3901),
toai sk BERT Multilingual Base nokasana aemto umkui 3uadenns (F1 — Score 0.3772).
Ukr-Roberta-Base, crertianizoBana i ykpaiHcbKy MoBYy, maiga F1 Score 0.3660, 1o
BKa3ye HE Ha KOPHUCTh BUKOPUCTAaHHS MOBHO-OpPI€EHTOBAaHUX Mojeneld. CTOCOBHO
BUII€3a3HAYEHOT0 TOKa3HMKA MOJENl MOKHa 3pOOUTH BHUCHOBOK, IO 0O0CST 1

PI3HOMAaHITHICTh TaHUX BAXIIMBI JJIS JJOCATHEHHS HaMKpaIIuX MOKa3HUKIB.

Transformers
infoXLM-large 0.5646 0.5510 05577
mDeBERTa-v3-base 0.6367 04644 0.5371
XLM-RoBERTa-large 0.5616 0.6500 06026
BERT-base-multilingual 0.5188 0.5697 .5431]
mit3-base 0.3930 0.6645 (.4939

Pucynoxk 2.6 — Pe3ysnbTar 3acTocyBaHHsS MOeIIeH B 3a1a4i Span detection

Jliis 3amagi span-detection Transformer-momeni mokaszanu 1me OUTBIT BHpPaKEHY
nepeBary y mnopiBasHHI 3 DL apxitexkrypamu. Hanpuknan, XLM-RoBERTa-large
nocsira F1 Score — 0.6026, precision —0.5616 i recall — 0.6500, nemoHCTpyIOYH 9y JOBHIA
OanaHc MK TOYHICTIO 1 TOKPUTTAM span-iB. mDeBERTa V3 Base nokazana F1 Score —
0.5371 i3 Bucokum precision — 0.6367, ane Hwxuum recall — 0.4644. Pe3ynpTaT CBITIUTh

PO KOHCEPBATUBHY MOBEIHKY MOJEJI1: BOHA pOOUTH MEHIIIE TOMUIIKOBUX Mepe10ayeHb,

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 32
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

MPOTE YaCTKOBO Ipornyckae peanbHi span-u. InfoXLM Large nocsarna F1 Score —0.5577,
precision — 0.5646 i recall — 0.5510, nemoHcTpyroun BimminHY 30anancoBanicte. BERT
Multilingual Base nokasana F1 Score — 0.5431, precision — 0.5188 i recall — 0.5697, mo
CBITYUTH IPO MOMIPHY 3[ATHICTH MOJEINI J0 Yy3arajJbHEHHS pe3yNbTaTiB 1 CTaOUIbHY
MPOJIYKTUBHICTh 0€3 CYTTEBHX MEPEKOCIB MK TOYHICTIO 1 MOBHOTOIO. MT5 Base mae F1
Score — 0.4939 13 Bucokum recall — 0.6645, ane Huzbkum precision — 0.3930, mo Bkazye
Ha TEHJICHIIII0 0 HAJIMIPHOT'O BKJIFOYEHHS Span-iB.

3 aHamizy pe3ysibTaTiB MOKHA 3pOOMTH Taki BHCHOBKH. Transformer-momeni
3HAYHO MepeBepiyoTh TpaauiiiHi ML 1 HaBiTe kimacuuni DL mopneni. OcobnuBo 115
nepeBara ToMiTHa mpu Span-detection, me mocmimkyBaHi Mozeni e(eKTHUBHIIIE
IHTErpyBaJd KOHTEKCT y MeXax BChOro TekcTy. Transformer-momeni m03BOJISIOTH
OJIHOYACHO BpaxOBYBaTH JIOKaJbHI MAaTePHH, TI00AIBHI 3aJ€KHOCTI W CEMaHTHUYHI
HIOAHCH, 110 BaXXJIMBO JIJIsS 3aBJIaHbh 0araTOMITKOBOi Kjacu@ikailii i TOKEH-PO3MITKH.
OCHOBHHMH TepeBaraMm € BHCOKa TOYHICTh, OamaHc Mk precision i recall, 3gatuicTs
mpaIoBaTd 3 0araTOMOBHUMHM JTaHUMH, CTIMKICTh O PIIKOBXHBAHUX CIIIB 3aBISKH
cyocnmoBHMM emOeaiaraM. Henomniku — moTpeba y BeIMKUX oOcsarax JaHuX 1 pecypcax
graphic processing unit (GPU), moBre HaB4YaHHS, BIJHOCHA CKJIAJHICTh IHTEpIIpeTaLii
pe3yabTaTiB, a TaKoXK YyTIMBICTH 10 TrimepmapamerpiB fine-tuning i pre-training
cTparterii [26].

3arajgom Transformer-migxoau 1eMOHCTPYIOTh HAWO LIBIIMH MOTSHITIAN IS 3a/1a4,
Je BaXKJIMBI KOHTEKCTYyaJlbH1 JeTaji, 0araToMIiTKOBICTh 1 TOYHE BHJIUICHHS Span-is.
MoxHa MMJICyMyBaTH, IO BUKOPHCTAHHS ITUX MOJEH € IOIUIBHUM B aHAUTITHYHUX

CUCTeMaxX pPO3Mi3HaBaHHS MaHIMYISTUBHUX TEXHIK Y TEKCTI.
2.2.4 Bubip MoaeJi 1Js1 BUKOHAHHS MAIIIMHHOT0 HABYAHHS

I3 aHami3y pe3ynpraTiB TpOX cimMeiicTB Moaeneit — ML models, DL i Transformer-
based — MoxHa 3pOOMTH KOMILICKCHI BHCHOBKH IOJ0 iX MPUAATHOCTI JJis 3aBIaHb
0araToMiTKOBOI KJilacHQikalii TeXHIK MaHIIMyJsAMii 1 TogHoro span-detection y texcrax

YKpaiHChKOIO 1 pocCiiicbkol0 MoBaMu. OIiHKa MPOBOAMIIACH 3a MaKpO-TIOKA3HUKAMHU

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 33
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

precision, recall i Fl-score. Bwumiesramani METpUKH JIO3BOJISIOTH 30aJIaHCOBAHO
MOPIBHIOBATH MOJENII Ha PI3HOMAHITHUX MiA3aJadyaxX, BPaxoBYIOUW cHEHUPIKY
0araToOMOBHUX JaHMX. YKpaiHChbKa W pOCICbKa MOBM MAalOTh CHUIbHI MOPQOJIOTIUHI

pucu, aje BiI[piSHHIOTBCH JICKCUYHUMHM M CUHTAKCUYHHUMU HIOAHCaMH, IO YCKIIAAHIOE

00poOKy.
Classifier Precision Recall FI Score
Technigue Classification
ML Models
LinearSVC L3543 02878 03102
CNB 02680 02818 0.2553
LE 02807 05433 0.3291]
RF 05688 0. 1060 01309
GB 03926 01423 0.1846
DL Models
CHNN 02991 03287 02816
CHNN+LSTM 03125 03388 0.3077
CNN+BIiLSTM 03403 3443 0.3252
CHNN+GRU 03649 03087 03179
Transformers
mDeBERTa V3 Base 03453 0.5055 0.3901
InfoXLM Large (L3855 05477 04451

XLM-RoBERTa-large 03917 0.5667 0.4498
BERT multilingual base 03710 (0.3930 03772

Ukr-Roberta-Base 03687 04366 1.3660
Span Identification
ML Models
LinearSVC 04020 03921 03970
LE 04169 03578 03851
MNB 04169 03578 03851
lightGEM 03599 04794 04112
DL Models
CNN 0.2596 0E71S 0.4001
CHNN+LSTM 0.2566 09187 04012
CHNN+BiLSTM 0.2878 08126 0.425]
CNN+BiGRU 0.2949 0.8023 04313
Transformers
infoXLM-large 0.5646 05510 0.5577
mDeBERTa-v3-hase 06367 04644 0.5371

XLM-RoBERTa-large 05616 06500 0.6026
BERT-base-multilingual 05188 0.5697 (.5431
mi3-base (0.3930 (6645 04939

Pucynok 2.6 — I[TopiBHAHHS MOJeIeil pi3HUX CIMEHCTB

Tpanumiitai Mo1ei MaITMHHOTO HaBYaHHS 3a0e3nedrii 0a30BY TOUKY BiTIKY JUIs
MOPIBHIHHS, 0a3yIOUMCh HA MPOCTIA BEKTOpH3aIlii TeKCTy 3a momomoror TF-IDF a6o
Bag-of-Words. Ileli migxix poOuth iX YyTJIMBUMH 10 IOBEPXHEBUX NATECPHIB, aje
0OMEeXeHMMU B 00poOIll TMMOOKUX CEMaHTHYHUX 3B'A3KiB. Jlims 3amgaul kmacudikarnii
TEXHIK HaHOUIbII 30alaHCOBaHMIA MinXia mpoaeMoHcTpyBaiia Logistic Regression, sika

nocsirae Bucokoro recall 3aBasiku 3maTHOCTI €ESKTUBHO MOJICITIOBATH JIIHIIHI 3aJI€)KHOCTI

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 34
AHaniz MaHIMyJIATUBHOCTI HOBUH 13 BUKOPUCTaHHSM alITOPUTMIB MAIIMHHOTO HABYaHHS

MK O3HAaKaMH, JO3BOJISSIOYH BHUSBIATH IMUPOKUN CIIEKTP MaHIMyJATHBHUX CJIEMCHTIB.
Cepen HEIOJIKIB Ci BUIUIMTH TIOMIpHHUW Precision depe3 Bpas3IUBICTH JO IIyMy B
TEKCTaX, CJICHTY, eMO/I31, abpeBiaTypax, 0 YCKIAAHIOE TOUHY Audepenitiaito. Random
Forest BUpI3HSIETHCS BHCOKOIO TOYHICTIO 32 PAaXyHOK aHCaMOJIEBOTO alrOpUTMY, SIKUN
arperye pilmieHHS MHOXHHH JEpPeB Ui YHUKHCHHS TIOMHJIKOBHX TIO3UTHUBIB 1
(GOKyCcyBaHHS Ha CTaOUTRHUX IMaTrepHax. TWMM HE MEHII II¢ MPU3BOJIUTH IO KPUTHIHO
Hu3bKoro recall, ockinbku Mojenb HaAMIPHO KOHCEPBATHUBHA 1 YaCTO MPOINYCKAaE TOHKI
MaHIMyJISTHBHI CUTHAJIA B JIOBI'MX MOCTIIOBHOCTSX TeKCTy [27]. Y 3amaui span-detection
mimepom cepen ML-metoxniB craB LightGBM, uus mepeBara mnossirae B rpaieHTHOMY
OyctuHry. BiH 1103BoJIsIE TIBUIKO 1TEPAaTUBHO IOKpAIyBaTH BHSBICHHS TOKEHIB 13
Bucokum recall 3aBmsku Qokycy Ha npiOHux o3nHakax (granural features). V upomy
BUIIAJKy MIOMipHA TOYHICTH MOSICHIOETHCS OOMEKCHOO 3/IaTHICTIO TOYHO OKPECITIOBATH
MeKi Span-iB 0e3 BpaxyBaHHs rioOanbHOro koutekcty [28]. Logistic Regression i
Multinomial Naive Bayes mocsraroTh Kpamoro Precision 3a paxyHOK CIIPOIICHHS
MOJIeNIl — Tiepiia uepe3 JIHIMHY alnpoKCHMMallilo, a Jpyra uepe3 MpUIIyIIeHHS
HE3aJIeKHOCT1 O3HaK. Y pe3ysbTaTi 3MEHIIYETHCS YYTJIIMBICT IO KOPEJIALii, IPOTe MpU
IIbOMY criocTepiraerbes meHmuii recall. Buiesasnauene 3ayBaxkeHHs B OUIbIIii Mipi
crocyetbcss Naive Bayes, ska moraHo mpaire 3 YMOBHMMH HMOBIPHOCTSAMH B
0araTOMOBHHMX JIaHMX 13 PIAKOBXKHBAaHUMH TEpMiHAMHU 4Yepe3 OOMEKEHY CTaTUCTUUYHY
6a3y. Pesynpratu 1eMOHCTPYIOTh, 0 KiacuuHi ML-minxonu MarTh GyHIaMEHTAIbHI
oOMeXeHHs y OajlaHCyBaHHI MiXK TOYHICTIO 1 BITHOBJICHHSM Ha CKJIaJHUX 0araTOMOBHUX
nannx. Cepen HENOMIKIB CHiJ BUIUIATH BIACYTHICTh MEXaHI3MIB JJIS 3aXOIICHHS
KOHTEKCTYaIbHUX 1 CEMAaHTUYHUX HIOAHCIB, 10 MPU3BOAUTH 10 HETIOBHOT'O OXOIUICHHS
MaHIMyJISITHBHUX MTATEPHIB.

['muOuHHI MoMeNi MPOJAEMOHCTPYBAIM 3MillIaHl TIEpeBaru. 3 OJHOTO OOKYy BOHHU
JI03BOJISTIOTH IHTETPYBATH TOCTIIOBHI 3aJI€KHOCTI Yepe3 PEKYPEHTHI Mapu W JTOKaIbHI
naTepHU 3a JIOMOMOT 010 3ropTKoBHX mapis (convolutional layers). 3 inmoro 6oky Moeri
oOMexeH1 (pIKCOBaHOIO JOBKUHOIO BXIIHUX IMOCIIIOBHOCTEH 1 MEHIIIOK aJalTHBHICTIO

10 OararoMoBHOCTI 0e3 crerianbHOro pre-training. HalOuibm ycIminiHUM BUSBUBCS

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 35
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

CNN+BIiLSTM, uus mepeBara moJjsira€ B JBOCTOPOHHBOMY BpaxyBaHHI KOHTEKCTY
(forward-backward), mo mo3Boinsie €pEeKTHBHO MOJETIOBATH IOCTYIIOBE HApPOCTAHHS
MaHIMyJISTUBHUX HapaTHBIB y TeKCTaX. Buiesragana nepesara 103BOJISIE 3aXOTUTIOBATH
K MOMEPEaH], TaK 1 HACTYIIHI CUTHAJIU JJIs KPAIloro po3ni3HaBaHHs CKJIaJHUX NaTepPHIB,
Ha BIIMIHY B OJHOCTOPOHHIX MiAX0MAiB. [HIII TIOpHUIHI apXITEKTYypH Ha OCHOBI
CNN+GRU a6o CNN+LSTM Ttakox mnepeBumyBanu mnoka3Huku mpoctoro CNN.
PexypenTni mapu, Taxi sk GRU nnst edpektuBHOT 00pOOKH TOBrOTPUBATIUX 3aJI€KHOCTEN
a60 LSTM 3 KJIIITUHKOBOIO TIaM'ATTO JIJIsl 3a1I00IraHHs] 3HUKHEHHIO TPAJIEHTIB J0/1al0Th
3MAaTHICTh YTPUMYBATH TMOCTIOBHI 3B'S3KM B pPEUCHHAX. Takui migxia 0coOJUBO
KOPUCHHMM JUIsl TEKCTIB 13 MOBTOPIOBAaHUMHU MOTHBAMH — (eHKOB1 (DAKTH 4K €MOIIiiH1
anesiii. Y Toii xe yac 3su4aiiHnii CNN oOMexyeTbest nuiie JTOKaIbHUMU 3ropTKaMu
(convolutional) 6e3 nuHaMidHOrO KOHTEKCTY. Y 3aaaui Span-detection naiiBuiuii 6ananc
noka3uukiB mpogemMonctpyBaB CNN+BIGRU, ne Bucokuit recall mnoscrroerbes
oinanpaBinenuM GRU. Bin ¢dokycyeTbest Ha rpaHysIsipHOMY BHSIBJIEHHI TOKEHIB 4epes
IIBHKY OOpOOKY IOCTIAOBHOCTEH 1 4yTIMBICTh 10 JIoKajdbHuX feature. Takum guHOM
OXOTUTIOETHCS IUPOKHUH CIEKTP MOTEHUIMHUX MAHIMYJISATUBHUX €JIEeMEHTIB. TakoxX CIif
3a3HAYMTH, III0 HU3BKUI Precision 3ymMoBIeHHH OOMEKEHOIO 3JaTHICTIO TOYHO
OKpecIoBaTH Mexi Span-iB. llei HemONIK COPUYMHEHWM THM, IO 3TOPTKOBI IIapu
aKIIEHTYIOTh Ha TIOBEPXHEBHX MaTepHAX, a HE Ha IJIO0ATHHOMY CEMaHTUYHOMY
KOHTEKCTI. Y pe3ynbTari BiAOyBaeTbcs HaAMIpHE PO3IMHUPEHHS a00 3BYKCHHS
¢parmMenTiB. 3araqoM BHKOHYETbCS €()EKTUBHE BH3HAYCHHS TOKEHIB Y IIYMHHUX
0araTOMOBHMX TEKCTaX, MPOTE HE 30BCIM TOYHE BHU3HAYCHHS MEX Span-iB uepes
BIJICYTHICTh TTMOOKUX MEXaH13MIB CaMOyBaru JJisl IHTETpallii BiIaJCHUX 3aJI€KHOCTEH.

Haii6 b1 Bupa3Ho nepeBaru JeMOHCTPYBaAIU TpaHCHOPMEpPHi MOJIENI, SIK1 3HAYHO
nepeBepmuian Ak Ttpaauriiai ML, tak 1 kmacuuni DL-migxogu. [IpuyHoro mpomMy €
apxiTeKTypa, IO OJHOYACHO BPAXOBYE JIOKAJIbHI MATEPHH, TJIOOAIBHI 3aJIeKHOCTI U
CEeMaHTHYHI HIOAHCH TEKCTy 4Yepe3 JUHaMIYHI MEXaHI3MH YBaru. 3aBHsKU
BUIII€3a3HAYCHOMY MOJIENIl 3[aTHI TJUOIIe pPO3YMITH KOHTEKCT MAaHIMYJISTUBHUX

HapaTuBiB y yMHHUX Telegram-moBinomieHusax. [knacudikarii TeXHIK HaWKpaIum

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 36
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

BusBuiaach XLM-ROBERTa-large, uus mnepeBara mossirae B ONTHMi30BaHOMY pre-
training Ha MacHMBHMX 0AaraTOMOBHHMX TEKCTaX 3 aKICHTOM Ha JWHAMIYHE MAaCKyBaHHS
tokeniB (masked language modeling). Monens He TiUTbkH e(EKTHBHO PO3II3HAE TOHKI
CEMaHTUYH1 3B'SI3KM MDK CIIOBaMHU, a TaKOX aJalTYyeThCA JIO0 KpPOC-JIIIHTBaJbHUX
noJiOHOCTe MK yKpaiHChKOrO 1 pocilicekoro. Y pesynbrati XLM-ROBERTa-large
3a0e3neuye 30alaHCOBaHE PO3MI3HABAHHS SIK IBHUX, TaK 1 IPUXOBAHUX MaHIYJIATUBHUX
enemeHTiB [29]. OkpiM 1bOro BOHA BHpI3HAEThCS IMOOKUMU mapamu Self-attention, siki
AMHAMIYHO 3Ba)XKYIOTh PENIEBAaHTHICTh KOKHOTO TOKEHa. SIK HAcHiJOK IpeacTaBicHA
OCOOJIMBICTh JI03BOJIIE TIEPEBEPINYBATH 1HINI MOJENI B 3aXOIUJICHHI JOBrOTPUBAIHX
3aJIe)KHOCTEH Y BEJIMKHUX TOCHTIIOBHOCTAX TEKCTY, € KOHTEKCT OyIyEThCS MOCTYIOBO.
Ananoriuno ans span-detection XLM-RoBERTa-large nemoncTpye mepeBary 3aBIasku
cyocimoBuuMm emOemainram (subword embeddings), ski TouyHO OOpPOOJIAIOTH
PIAKOBXHMBaH1 TEPMiHU 1 MOpdoJioriuHi Bapiallii B 000X MoBax. 3aBJISIKU I[bOMY BHUSIBIISIE
TOKEHH 3 MaHIMYJIITHBHUM 3a0apBIEHHSIM 1 TOYHO OKPECIIOE iXHI MexXl uepes
IHTErpario TI00aJTbHOTO0 KOHTEKCTY, IO POOUTH ii i7eanbHOIO0 ISl TPaHyJSPHOTO
aHajizy B peanbHOMYy uaci. [lopiBHSHO 3 IHIIUMH TpaHC(HOPMEHHMH MOJICISIMH Ma€e
MEHIIYy YYyTJIUBICTh O IIyMy Bix eMoxa3i um cieHry. Ilpu cmiBcraBienni 3 InfoXLM
Large, sika edexTtrBHa B 1H(POpPMAIIHHUX TEKCTaX 3aBISKU CICIiali30BaHOMY pre-
training Ha CHIMKIONCIUYHUX JAHUX, YCE JK TOCTYHMAETbCA B THYYKOCTI IS
HedopMaJIbHUX KOHTEKCTIB uepe3 MeHIry riunouny mapis. Moaeni mDeBERTa v3 base,
mynpTuMoBHUM BERT Takox mepesepmrytote ML 1 DL migxomu, ane mocTymarOThCs
XLM-RoBERTa-large B TouHOCTI ceMaHTHYHOTO MOjeTtoBaHHA. [IpuuuHa moisrae y
MEHIII ONITUMI30BaHUX MEXaHI3Max yBaru JJjisl 0araTOMOBHUX HIOAHCIB 1 JJOBIOTPHUBAIHX
3aNMeKHOCTe. TakuM YHHOM OOMEXYEThCS TOYHICTh y BHU3HAYEHHI CKIIQTHUX
MaHIMYyJSATUBHUX TIATEPHIB 13 3MIMIaHUM BHKOPUCTAHHSIM JEKUIBKOX MOB (code-
switching). Bucoxki pe3ynbTaTé TpaHC(HOPMEPMEHHX MOJCIICH 3arajioM IMOSCHIOIOTHCS
MOTEepeIHIM TPEHYBAaHHSAM Ha 0araTOMOBHUX JaTaceTaxX, IO BKJIIOYAIOTh MUIBHOHHU
MPUKJIA/IIB 3 NOII0HUX JKepell. He MeHIll BaKIUBY poJib BIIIrparOTh IMUO0KI MEXaH13MHU

self-attention, siki 103BOJIAOTH MOJIENI YJIOBJIIOBATH TOHKI KOHTEKCTYaJdbHI CUTHAINA —

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 37
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

capkasM, eB(emi3MU I CeMaHTHYHI B3a€MO3B’S3KM MDK TOK€HaMH. BomHouac cepen
Henonikie XLM-RoBERTa-large Bapro Big3Haumtu 11 BHCOKY OOYHCIIOBAIBHY
CKJIQJHICTh Yepe3 BEJIMKY KUIbKICTh MapaMeTpiB. Y pe3ysbTaTi HAaBYAaHHS BUMaraTUMe
3HauHux pecypciB GPU mns fine-tuning 1 inference. Moxenp Takox MoOXe MaTH
MOTEHIIIHY CXWIBHICTh J0 NepeHaB4anHs (Overfitting) Ha cnienudiuaux TpeHyBaIbHUX
naTepHax, SKIIO JaTaceT HEJOCTaTHbO pI3HOMaHITHUH. Bumie3za3HaueHa oOcTaBuHA
MO>K€ 3HU3UTH CTA0LIBbHICTh Ha €BOTIOIIOHYIOUHX JIIHTBICTUYHUX TPEHIAX.

OcHoOBHI mepeBaru TpaHCHOPMEPHUX MOJENEH BKIIOYAIOTh BUCOKY TOYHICTB,
30aJIaHCOBaHICTh M precision i recall, 3patHicTh nmpairoBaTi 3 6araTOMOBHUMH TAHUMHU
i1 edekTHBHY 00pPOOKY pimKOBKUBaHUX CITiB 3aBsku SUbword embeddings. Jlo HemosikiB
HajeXkaTh BUCOKa moTpeba y Belukux obcsrax gaHux 1 pecypcax GPU, tpuane
HaBYaHHS, BIIHOCHA CKJIAJAHICTh IHTEPIIPETAallil pe3yJIbTaTiB, a TAKOXK CHJIbHA UYTIMBICTD
710 HAJIAIITYBaHb Tineprnapamerpis mig yac fine-tuning i pre-training.

OTtxe, TpanchopMepHI MOJIEN] IEMOHCTPYIOTh HAMBUIIMI MOTEHIIAN AJid 3a/ad,
7€ KPUTHYHO BAXJIMBI KOHTEKCTYallbH1 JeTaii, 0araTOMITKOBICTh 1 TOYHE BHIUICHHS
span-iB. Takox 11e MOSCHIOETHCS 1X apXITEKTYPOIO, sIKa I03BOJISIE AMHAMIYHO IHTETPYBaTH
JOKaJdbHI W TJI00anbHI CEMaHTHYHI CHUTHaIU. TpaHchopMepHi Mopeni 0coOJIMBO
e(eKTUBHI Il BUSBIICHHS MPHXOBAHUX MaHIMYJIATUBHUX IMATEPHIB y He)OpPMaJIbHHUX,
IIYMHUX TEKCTaX, J¢ TPAIUIIINHI MiIX0AH TYOJSTh HIOAHCH Yepe3 oOMexeHy oO0poOKy
3anmexHoctei. L[i mepeBarm 0coOnMBO BHpaxkeHi B 0araTOMOBHOMY CEpPEIOBHIII
YKpaiHCHKOI 1 pOCIACHKOT, 1€ MOJIEl MOKYTh 3HAXOJUTH KPOC-JIIHTBaJIbHI MOAIOHOCTI —
CHiNbHI MOP(MOIOTiuHI KOHCTPYKIIil UM JIEKCHYHI 3aIl03MYeHHs. 1X MOITyK BUKOHYEThCS
0e3 moTpedu B OKpeMOMY TPEIPOIIECUHTY (Preprocessing), 3adbe3nedyodn CTIHKICTh 10
Bapiamiii cienry. Cepen ycix transformation models XLM-RoBERTa-large BusiBunacs
HANOUTBIT TpUIATHOO A fine-tuning, 3aBISIKM CBOEMY ONITHMi30BaHOMY pre-training Ha
MacCHUBHHX 0araToOMOBHUX 00’€Max TEKCTy 3 JTWHAMIYHUM MacKyBaHHsIM. Buiesragana
repesara J03BOJISIE MOJIEI HE TUIbKY IIBUAKO aJIalTyBaTUCS 10 cneludiuHUX JOMEHIB
MaHIMYJATUBHUX TEXHIK, a TaKOX 30epiratu riuOOKe pO3yMiHHS CEMAHTUKHU. Y CBOIO

4yepry J0CsraeThCs 30allaHCOBAHE CHIBBIIHOMIEHHS MDK TOYHICTIO 1 IOBHOTOIO

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 38
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

pe3ynbTatiB. BUCOKI MOKAa3HUKHM 3a0€3MeuyoThCs 3aBISKH €(PEKTUBHOMY 3Ba’KyBaHHIO
pEeeBaHTHUX TOKEHIB 1 BpaXyBaHHIO JJOBIOTPUBAIMX KOHTEKCTYaJbHUX 3B’ A3KIB. Takuit

X1 € ONTUMAIBHUM JIsl 000X Mif3aay — Kiacudikallii TeXHIK 1 BUSIBJICHHS SPan-iB.

2.3 Crparerii HaBYaHHA 1Js onTuMizanili TpancopmMepHUX Mojaesel y

3aBJaHHI PO3Ni3HABAHHA MAHINMYJSATHBHUX TEXHIK

Ha ocHoBi nonepeanboro anamizy eheKTUBHOCTI MojieJiel OY10 BCTAHOBJICHO, 1110
TpaHCc(OpPMEpPHI apXITEKTypH MarOTh HaWBHUINMK TMOTEHIIal IS 0araToOMITKOBOL
Kaacudikallii TeXHiK MaHITyJIsIii 1 Span-detection y Tekcrax ykpaiHChbKOIO, POCIHCHKOIO
MoBamMu. HacTymoHi0 He MEHII BaXJIMBOKO 3ajayelo € BUOIp peleBaHTOl CTparerii
HaBuaHHs. Jleski miaxoan GOoKyCyrOThCS Ha BUKOPUCTaHHI MpeTpeHoBaHuX (pre-trained)
MoJiesiel, TOHKUX HajamTyBaHHsaX (fine-tuning) i riopuaHux migxomax, siKi aJanToBaHi
no cnenudiky HabOpy HaHMX — OOMEXEHICTh AaHOTOBAaHUX JaHUX Yy JIOMEHI
MaHIMyJSATUBHUX TEKCTiB, 0araTOMOBHICTh ¥ mMOTpeba B KOHTEKCTyaJIbHIN TITHOMHI.
Kosxna crpateris Mae cBOi 0COOJIMBOCTI, MEpeBaru i HEAOJIKHA, TOMY CIiJ MPUILTATH
yBary HpaBWJIBHOMY BHOOPY 3BaXkarouM Ha JOCTYMHI pecypcu central processing unit
(CPU), GPU.

Pre-training rpyHTyeThCS Ha MOJCTIOBAaHHI Ha MAaCUBHHX 3arajbHHUX KOpIycax 3
BUKOPHCTAaHHSIM 3aB/aHb, Takux sk Masked language modeling (MLM) a6o next sentence
prediction (NSP), mist 3aX0OIUICHHS CEMaHTUIHHUX Ta CHHTaKCUIHHUX ocoOsmBocTeit [30].
VY koHTeKcTi 3amayi mepeBaramu Ii€i crpaterii € (QyHZaMEHTaNIbHE PO3YMIHHSA
0araToMOBHUX HIOAHCIB Y POCIMCHKUX 1 YKPATHCHKUX TEKCTIB, IO JO3BOJISIE €(HEKTUBHO
VIIOBIIOBAaTH TOHKI MaHIMyJATHBHI CUTHAJIM Oe€3 3adydeHHS crenu(iuHuX JaHuX, a
TAKOX CTBOPEHHS MIITHOI 0a30BOi CEMAaHTHKW I HU3BKOPECYPCHHX MOB 3 KpoOC-
THTBATBHUMH TOAIOHOCTSAMH, IO CIPHUSE y3aralbHEHOCTI HA HEOAUCHUX MaTepHaX y
Telegram-texcrax. OOMEXEHHSIMHM € 3HA4YHI BHMMOTH JI0 OOCATIB JaHMX Yy BHUIJISAII
MUTSIPAIB TOKEHIB 1 PECYpCIB, 1110 BKIIIOYAIOTh 3HAYHOTO Yacy OOYMCIIEHb Ha KJIacTepax

GPU. Takox BaxJIMBY pOJIb Bifirpae HeJOCTaTHS afamnTarlis 70 gomeHy Telegram, me

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 39
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

IIYMH1 He(dopMallbHI TEKCTH BHUXOJASTh 3a MEXKI THIOBHX KOPMIYCIB IMONEPEIHBOIO
HABYAHHA 1 MOTPEOYIOTh JOJIaTKOBOTO IOMEHHOTO 200 3aBJIaHHEBOTO JTIOHABYAHHS.

Fine-tuning mepenbayae ajanTaiilo OPETPEHOBAHOT MoOjAEHiI Ha JIOMEH-
crienuPiYHUX aHOTOBAHMX JAHUX 3 MOBHUM a00 YAaCTKOBUM OHOBJICHHSIM IMapaMeTpiB
(HampuKTajA, 3a JomoMoror onTumizamii AdamW i3 learning rate 1e™°) [31].
VY KOHTEKCTI 3a/1aul nepeBaraMu 1i€i cTparerii € nokpauieHHs F1-metpuxu Ha 20-30%
Ui kinacugikamii TeXHIK MaHIMyJAIii, MBUIAKOTO BUSIBIEHHS SpPan-iB, 3a0e3medyeHHs
MOJIeJIl 3/IaTHICTIO ONEepyBaTH MITKAMH MaHIMyJsii. Takox BapTo 3rajatu rnpo OanaHc
Mk precision i recall 3apasxu gradient clipping i dropout. 1o 3ano6irae oBepiTTHHTY
Ha IIYMHUX JaHUX, PoOJIsYM ii MPUAATHO JJIs cepeAHiX maraceTiB 5-10 THC. psaKiB.
OOMexeHHSMHU € 4YyTIUBICTh 10 TinmepnapameTpiB 1 pusuk catastrophic forgetting
3araJibHUX 3HaHb, OCOOJMBO HAa OOMEXEHHMX JaraceTax, J¢ MOXKIWBI yIepeKeHHS B
6araToMiTKOBOCTI.

Transfer Learning 3 nmomeH-agantamiero (domain adaptation) oxorutioe
NEPEHECeHHs] 3HAHb 13 3arajbHOTO TEKCTYy [0 MAaHINyJliil 4Yepe3 aHTaroHiCTUYHE
HaBuanHs (adversarial training) abo mpoaoBXkeHe MpeTpeHYBaHHS Ha HE3aaHOTOBAHHUX
nanux [32]. Y KOHTEKCTI 3a/1a4i iepeBaraMu i€l CTpaTerii € ajganTallisi peTpeHOBaHOT
Mojen 10 HehopMaldbHOro CTHIIO Telegram, mokpaileHHs y3arajJibHEHOCTI Ha
HeOaYeHUX MaHIMyJAIIAX, a TAKOK e(PEKTUBHICTD Il 6araTOMOBHOCTI, /I ajarTailis Ha
3MIMIaHUX YKPATHO-POCIMCHKUX KOPIycax 3MEHInye nmoMuiiku Ha 15-20% y BHUsBICHHI
Span-iB, CIPHUSIOYU CTIMKOCTI 10 TOMEHHUX po30ikHOCTEH. OOMEXKEHHSIMH CIYTYIOTh
MIIBHINCHA CKIAIHICTh 1 TMIOTEHIIHE pO3MHBAaHHSA CEMAaHTHKH TIPU 3HAYHUX
PO301KHOCTAX MK JIOMEHAMHU, 10 30UTBIITYE OOYHCITIOBAIbHY HABAHTAKEHHS.

Few-Shot Learning 3 Prompt Engineering 06a3yeTbcss Ha BHKOPUCTAHHI
MPETPEHOBAHOT MOJIEIl 3 MIHIMaJbHUMHU MPUKIATAMHU Yepe3 1HKEHEPIit0 MPOMIITIB a0o
in-context learning, 6e3 mosHoro fine-tuning [33]. ¥ xoHTekcTi 3a7a4i epeBaramMu Ii€el
CTpaTerii € i/lealibHa TPUAATHICTb AJISI HU3bKOPECYPCHUX ClIeHapIiB (0OMexkeHa KUTbKICTh
aHOTaIld MAHIMyJSIINA), BUJKE TECTYBaHHS HAa HOBUX MAaHIMYJISTUBHUX TEXHIKAX 3

recall monan 50% 3a paxyHOK CEMaHTHYHOTO PO3YMIHHS, a TAaKOK €KOHOMIsl pecypciB

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 40
AHaniz MaHIMyJIATUBHOCTI HOBUH 13 BUKOPUCTaHHSM alITOPUTMIB MAIIMHHOTO HABYaHHS

yepe3 aKIeHT Ha KpeaTHMBHUX MPOMMTAaX IS BHIUICHHS SPan-iB y TEKCTax.
OOMeXeHHSIMHM € HH)KYa TOYHICTH 1 HEeCTaOUILHICTH Ha 0araTOMITKOBHX 3ajadax, JIie
MPOMIOT MOXKE «3a0yTU» KUIbKa MITOK, IO 3HWXXYE HAAINHICTh JIS TOBHOIIHHOI
aQHAJITUKH.

Continual Learning nosnsrae B HociaiJOBHOMY OHOBJIEHHI MOJIEN1 HA HOBUX JaHUX
0e3 3a0yBaHHs MTONIEPEAHIX 3HAHB 3a Jonomororo elastic weight consolidation (EWC) a6o
replay buffers [34]. V kouTekcTi 3amaui nmepeBaraMu Ifi€i cTpaTerii € AOPEUHICTh IS
€BOJTIOI[IOHYIOUOTO MaHIIyJISTABHOTO KOHTCHTY Telegram, 30epeKeHHS
OPOAYKTUBHOCTI HA MOMEpPE/HIX TEeXHIKaxX MpH ajanTamii 10 HOBHX 3 MIHIMaJbHOIO
BTpaToto F1l. Takox cmocTepiraerbcsi KOpUCTH JJIsi ©0araTOMOBHOCTI, JI€ MOJIEIb
«ramM’sTae» JIHTBICTUYHI Bapiaiii, 3a0e3Meyyround JIOBIOCTPOKOBY CTIHKICTb.
O6MexeHHsIMU € TToTpeba B Oydepax TaHuX JJIsl IOBTOPY, 110 30UIbIIYE OOCAT TaM'aTi i
CKJIQJIHICTh MacIITaOyBaHHS Ha BEJIMKI Mojel 0e3 peryispusailii, 10 YCKIaTHIOE
MOYaTKOBE HAJAIITYBaHHS.

HaitonTruManbHIIOK CTpaTeTi€ro IS BUPIIICHHS MOCTaBlIeHUX 3aBaaHb € fine-
tuning XLM-RoBERTa-large, sika 3a0e3mnedye HaiKpalle CIIBBIIHOIIECHHS TOYHOCTI,
cTabUTbHOCTI 1 pecypcHux BuTpat. Came fine-tuning 103BOJIsI€ MIBUIKO aJaNTyBaTH BKe
MOTY)KHY OaraToMoBHY Mojenb A0 cruenudiku Telegram-moMeHy, BUKOPHCTOBYIOUH
HaBITh BIJIHOCHO HEBEJWKI aHOTOBaHI KOPITYCH, MpU IbOMY TapaHTye mpupict F1-
Metpuku monas 0.50 nis kmacudikarrii TeXHIK 1 BU3HaUYeHHs span-iB. Ha Biaminy Bijg pre-
training, mo moTpedye KoJocadbHUX pecypciB 1 dYacy, fine-tuning 3abe3meuye
OlepaTUBHY creramizamifo. Y Toil yac mopiBHSHO 3 domain adaptation yHuKae
HaIMIpHOT CKJIQJHOCTI AHTAarOHICTHYHHMX MIAXOJIB, JOCATAlOYH CXOXKOrO pIBHSA
y3araJibHEeHOCTI 3 MEHImuMHU BuTparamu. Few-shot learning 3anuimmaeTbcs KOpUCHUM
THCTPYMEHTOM I €KCTIPeC-MIPOTOTUITYBAaHHS HOBHUX Mif3ajad, ajie TOCTymaeThes fine-
tuning y cTabiIbHOCTI i 6araToMiTKOBOCTI, a continual learning momiIbHUN TIEPEBAKHO
JUISL AUHAMIYHUX CIICHAPI1iB, 1€ KOHTCHT MOCTIHHO 3MIHIOETHCS, 1110 MEHIII aKTyaabHO JJIS

CTaTUYHUX JATACETIB.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 41
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

2.4 Coenudikanii BUMOr 10 NPOrpaMHoOro 3ade3neyeHHst

[IpoexT po3poOKH MPOrpaMHOTO 3a0E3MEUCHHS Mae€ Ha METI CTBOPEHHS
IHHOBAIIIHOTO PINIEHHS JIS aHaji3y TEKCTOBW3 TOBIJOMJICHb 3 METOIO0 BUSBIICHHS
MaHIMyJISITUBHUX TEXHIK.

[Ipu3zHaueHHs 1 MEX1 MPOEKTY:

1) NPU3HAYCHHS CUCTEMH (3aCTOCYHKY), IS SKOi PO3pOOIISIETHCS TPOTPaMHE
3a0€3MeUCHHS: MMPU3HAYCHHSAM 3aCTOCYHKY € aHajli3 HOBHHHHMX TEKCTIB 1 BUSBJICHHS Y
HUX MaHIMYJISTUBHUX PHUIOMIB,;

2) NOTO/IKEHHS, 1110 YXBaJIEH1 B MPOrpaMHIA JOKYMEHTAlli: MOroKeHO, 110
st crBopenHst [13 ta iioro ctabuibHOT po60TH OYAyTh BUKOPUCTOBYBATHUCS (PPEUMBOPKH
i 6ibmiorexu — Python, aiogram, scikit-learn, Hugging Face Transformers;

3) Mexi mnpoekty II3: kpaitHsa pata 3aBeprieHHs poOGotu Han [I3 —
15.10.2025 p.

3arajibHHil OIHC:

1) chepa 3acToCyBaHHS: MOXE 3aCTOCOBYBAaTHCS y cdepi >KypHaTICTHUKH,
MeJIlarpaMOTHOCTI, OCBITHIX KYPCIB, TOCTiIXeHb y cdepl iHpopMariiiHoi Oe3nexy;

2) XapaKTEPUCTUKU KOPHCTYBAYiB: OCHOBHI XapaKTEPHCTUKH KOPHUCTYBaUiB:
HasBHICTh niepcoHabHOro KoM 'totepy (I1K), noctymy mo mepexi IHTepHer, akayHTy B
Telegram;

3) 3arasbHa CTPYKTypa W CKJIaJ] CHCTEMHU: OCHOBHI YaCTHHH JJII CTBOPEHHS
MPOTPaMHOT0 3a0e3MeUYeHHsT — MOAYJl sl o0OpoOKu TekcTy 3a gomoMoror NLP,
KiieHTchka pponTeHa yactuna (Telegram user interface (Ul));

4) 3arajibHi OOMEXeHHsS: oOMexeHHs misi podotu 3 I13 — massuicte IIK,
MIKJTFOYCHHS 10 Mepexi [HTepHeT, HasBHICTh akayHTy B Telegram.

OyHKIii cucTeMu (MOIMIYK JIOTIB 1 BIIICTEKEHHS CTAaBOK, SIKI pOOWIM 1HIII
KOPHUCTYBadli):

1) onuc (QyHkuii: (QyHKIIA A03BOJISIE aBTOPU30BAHOMY KOPHUCTYBaudy
BIIMPAaBUTH TEKCT y OOT, MICJIS YOTO CUCTEMA 31MCHIOE HOTO aHalTi3 1 BU3HAYA€E HAABHICTD

MaHIMYyJATUBHUX TPUHOMIB,

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 42
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

2) BXiJHA 1 BHUXiJHAa 1HQopMaIllis: BXigHa 1HGOpPMAIlE — TEKCTOBE
MOBIJOMJICHHS, SIK€ HAJICUJIA€ KOPUCTYBay; BUXIAHA 1H(POpMallis — CTPYKTYpOBaHUM
pe3yabTaT aHali3y 13 3a3HaYCHHSM MaHIMYJATUBHUX TEXHIK Y TEKCTI.

3) ¢yHKIIOHATBHI BUMOTH:

a) o00poOKa TEKCTOBUX MOBIIOMJIEHb — (DYHKIISI JO3BOJIE KOPUCTyBadam
HAJCUJIAaTH y OOT IOBUIbHI TEKCTOBI MOBIIOMJICHHS JIsl aHAI3Y
— BXIJIHI 1aHi: TEKCTOBE MOBITOMJICHHS KOPUCTYBaya,
— BUXIAHI JlaHi: pe3yJibTaT aHaiizy, L0 BKJIOYAE KiIacU(PIKallio
MaHINyJATUBHUX TEXHIK 1 MM1JICBI4YBaHHS MPOOJIEMHUX (PparMeHTiB;
0) TOBIIOMJIEHHS MNMPO TNOMWIKM — (yHKIS 1HQOpMye KOopHCTyBaya Yy
BUIIAJKY BBEJICHHS TEKCTY HEMIATPHUMYBaHOK MOBOO a00 IIPH TEXHIYHUX 300X
— BXiIHI JaHl: TOBUIOMJICHHS Yy HEMATPUMYBaHii MoOBI abo
HEKOPEKTHUM (opmar;
— BUXIJIHI JIaH1: TOBIIOMJICHHS MPO MTOMUJIKY 3 PEKOMEHAIlISIMH;
B) JoBigkoBa iH(opMmaris — QYHKIIS Ja€ MOXIMBICT KOPHUCTyBauy
OTPUMATH OIMKC PI3HUX BUJIIB MAHIMYJISIIIH:
— BXIJIHI JIaHi: KOMaH/1a KOPUCTYBaya,
— BUXIJHI JaHi: CIIUCOK 1 MOSICHEHHS BUKOPHUCTAHUX MaHIMYISATHBHUX
TEXHIK.

Bumoru 1o indopmariiiinoro 3ade3ned4eHHs:

1) JHKepenioM BXiaHOT iHGopMaIlii € TeKCTOB1 MOBIAOMIICHHS, SIKI HAJICUIIAIOTh
abo mepecwnarTh KopuctyBaui y Telegram-60T;

2) CHeIiaTbHIX BUMOT JI0 HOPMAaTUBHO-/TOBIIKOBO1 iH(popMarllii HeMae;

3) iHbopMmarlis He 30epiraeTecs y 6a3i ganux. O6podka BiIOyBa€ETHCS B peKUMI
peanpHOTO Yacy 3a jgomomororo NLP-Momeneif, micis dYoro pe3ysibTaTH aHai3y
MOBEPTAIOTHCS KOPUCTYBAUY.

st po3poOku i poOOTH MpPOrpaMHOro 3a0e3MeyYeHHsl He MepeadayeHo 3HAYHUX
TeXHIYHUX OOMEXeHb. JlOCTaTHRO HASBHOCTI CEPBEPHOIO CEPEIOBHIIA 3 JOCTYIIOM JI0

Mepexi [ntepHet Ta nigTpumkoro Python (nst NLP-moneneit) 1 Telegram Bot API.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 43
AHaniz MaHIMyJIATUBHOCTI HOBUH 13 BUKOPUCTaHHSM alITOPUTMIB MAIIMHHOTO HABYaHHS

Bumoru 1o nporpamMHoro 3abe3neyeHHs :

1) apXxITEeKTypa IpOorpaMHOi CUCTEMHU: CUCTeMa CKilagaeThes 3 Telegram-0ora,
nBox NLP-moneneit (kinacudikaiiist TUTIIB MaHIMYJISIIMA 1 BUSIBJICHHS CIIaHIB);

2) CHUCTEMHE MpOorpamMHe 3a0e3MeUeHHs: MJIsI PO3POOKU BUKOPUCTOBYETHCS
Python (ocnoBHa MoBa peainizaiii NLP-moneneit) ta Telegram Bot API;

3) MepexeBe IporpaMHe 3a0e3nedeHHs: A cTBopeHHs [13 BUKkopuctoByeTbes
OC Windows, pemakrop koay PyCharm i mecenmxep Telegram;

4) nporpamMHe 3a0e3mnedyeHHsT BeAeHHs 1H(opmariiiHoi 6a3u: He
BUKOPHUCTOBYETHCA, OCKIIBKU CUCTEMA He niepeadayae 30epexeHHs icropii 3anuTiB y b/1;

5) MOBa 1 TexHoJorist po3poOku [13: ocHoBHA MoBa po3podku — Python. s
NLP-mozeneit BukopuctoBytotbes 010mioreku PyTorch abo TensorFlow, ans interparii
— Telegram Bot API.

Bumoru 110 30BHIIIHIX 1HTEpdENCIB:

1) iHTepdeiic KoprucTyBaya: B3aeMOis 3 00TOM BIIOYBAETHCA 0€3MOCEPETHBO
y cepenoBuili Telegram. [HTepderic peanizoBaHuil y BUTIIAII A1AIOTy «KOPUCTYyBad —
00T»: KOpHCTyBad Hajcujiae abo Iepecusiac MOBIAOMIICHHS, OOT BHUKOHYE aHaI3 1
MOBEpPTaE pe3yJbTaTH 3 MIACBIUCHHMMH MAaHINMYJIATUBHUMHU (parMeHTamMu i
nosicHeHHsIMU. JlomaTkoBI KOMaHAW (HANpWKIad, JOBiIKa, iHGOpMaIls Mpo THUIH
MaHIIYJISIIH) TOCTYIHI Y BUTJISIAI TEKCTOBUX 3alUTIB 4K KHOMOK Telegram;

2) anapatHuii iHTepdeic: Oynb-skuil mpuctpid, mo miarpumye Telegram
(cmaptdon, manmer, [1K), 3 nocrynom no mepexi [aTeprer;

3) nporpaMuauii iHTepderic: ocHoBa pobotu — Telegram Bot API mis oOminy
noBigomsieHHAMH. [0OpoOku TekcTy BUKOpHCTOBYIOThCS NLP-momeni na Python
(PyTorch, TensorFlow);

4) KOMYHIKaIlIMHAA TPOTOKOJI: 3aCTOCYHOK O0a3yeThCsi Ha BUKOPHUCTAHHI
mepexxuaux npotokoiiB Wireless Application Protocol (WAP) — mpotokos 6e31poToBoi
nepenaui ganux i TCP/IP.

BnactuBocTI mporpaMHOro 3a0e3ne4eHHs :

1) JOCTYIHICTh: OOT IOCTYNHUM JJis BCIX KopucTyBauiB Telegram, siki MatoTh

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 44
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

nocrtyn a0 IarepHery;

2) CYNPOBOJIKYBaHICTb: NepeadaueHa MOXKIUBICTh OHOBIIEHHS NLP-moneneit
1 pO3LIMPEHHS CIIOBHUKIB MAHIMYJISALUIMHUX TEXHIK;

3) NEPEHOCUMICTh: OOT HE 3aJE€XUTh BiJ MIATPOPMU KOPUCTYBaya, OCKUIBKH
Telegram € kpocmiatGopMeHUM 3aCTOCYHKOM;

4) IPOJYKTUBHICTh: 4Yac OOpPOOKM 3amuTy 3aleXuTh BiJ mBUAKOAlT NLP-
MOJIEJIeH 1 IKOCT1 IHTEpHET-3’ € JHAHHS KOPUCTYyBaya,

5) HAAIMHICTB: cucTeMa cTabUIbHO 00pOOJIsi€ MOBITOMIICHHS Y peajJbHOMY Yaci.
VY BUTIAIKy BUKOPUCTAHHS HEMIATPUMYBAHOI MOBH OOT MOBIIOMIISIE TIPO TIOMUJIKY

6) Oesneka: mepenada JaHUX BIAOYBAEThCA depe3 3amudpoBaHi KaHATU
Telegram.

BripoBa/pkeHHSI 1[bOTO TPOTPAMHOTO 3a0€3MeUeHHsT JO3BOJUTH 3a0e3MeYUTH
JOCTYITHICTh, 3PYYHICTh 1 0e3meKky uisi KopucTyBauiB. [IpoekT Hamae MOXIMBICTH
IIBUJKO OTPUMATH 1H(OpPMAIII0 MPO MAHIMYISATUBHICTE TEKCTIB 0€3 BHUKOPHUCTAHHS
CTOPOHHIX PECYpCiB, I1HTErpyIOYUCh O€3MOCepeIHh0 Yy TMOMYJISPHUNA MECEHIKED

Telegram.
BucHoBku 10 po3aiay 2

Hpyruii po3ain mnpucBsueHO ¢yHAAMEHTAIbHUM acleKTaM TEOpPeTUYHOI 1
METOMOJOTTYHOT a3y JyIsl pO3Mi3HABAaHHA MAHIMYJISTUBHUX TEXHIK y 0araTOMOBHUX
TEKCTax 3 miaTdopmu Telegram, oxommowdu aHaai3 JaHUX, OIS CyY4aCHUX IiIXOJIiB
XapaKTepUCTHUIll HAOOPy aHUX, BKIIFOYAIOYN CTPYKTYPY aHOTaIlii, crenudiky oopooku
TEKCTIB YKpPAiHCBKOIO 1 POCIHCHKOI0 MOBaMH, a TaKOX KIIIOYOBI O3HAKH, IO
Bi10Opakar0Th KOHTEKCTYyallbHI, CEMAHTUYHI OCOOTMBOCTI MaHIMYJISTUBHUX EJIEMEHTIB.

Po3rnsHyTO IIMPOKHMM CHEKTp METOAOJIOTiH HaBYaHHS IOYMHAIOYW BiJ
TpaAUIIAHUX MOJIEJIEH MAIIMHHOTO HAaBYaHHS 3 IXHIM (JOKYCOM Ha 0a30BUX alrOpUTMax
3aKIHUYIOUM TJIMOMHHUMH apXITEKTypaMu, sIKi IHTErPYIOTh PEKYPEHTHI ¥ 3rOpTKOBI

mapu JJis MOCIiJOBHOI 0OpOOKH 1 10 MepeloBUX TpaHC(HOPMEPHUX MOAENEH, 3MaTHUX

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 45
AHaniz MaHIMyJIATUBHOCTI HOBUH 13 BUKOPUCTaHHSM alITOPUTMIB MAIIMHHOTO HABYaHHS

3HAXOJUTH IJI00aIbHI 3aJIEKHOCT1, HIOAHCH B IIyMHUX HedopMaabHUX TekcTax. [1ig ac
MOPIBHSHHS MOJIENIel NOKa3aHo, 1o ki1acuuHi ML mMoaensl MOXXyTh OyTH BUKOpPHCTaHI
K 06a30B1 OPIEHTUPHU a00 THCTPYMEHTH MOIMEPEIHHOTO aHaJI3y, OJHAK IXH1 MOMXJIUBOCTI
CYTTEBO OOMEXKEH1 4Yepe3 HEe3aTHICTh BpaxoBYBaTH CKJIaJHI KOHTEKCTyaJbHI Ta
CEMaHTHYHI 3aJIe’)KHOCT1. Y cBoto uepry DL dacTkoBO 1071at0Th 111 OOMEKEHHS 3aBIsSKU
1HTEerparlii JIOKaJdbHUX 1 MOCIIIOBHUX O3HAK, MIPOTE BCE II€ MOCTYNAIOTHCS Y 3AaTHOCTI
MO/ICTIOBATH TII00ATBHUN KOHTEKCT Yy 0araTOMOBHUX TeKcTax. Ha OCHOBI 1IbOTO aHaNi3y
OOIpYHTOBAaHO BUOIp ONTUMAIbHUX TPAaHC(HOPMEHHUX apXITEKTYp 3 aKLIEHTOM Ha IXHIO
NPUAATHICTh J0 3aBJaHb 0araToMiTKOBO1 Kjacu@ikailii 1 TOUHOTO BHAUICHHS SpPan-is,
BpPaxoBYIOUM OOMEXEHICTh pecypciB 1 creuudiky gomeHy. JleTanbHO BHCBITICHO
cTparerii aganTarlii Mojesiel, Taki sSK NpEeTPEHYBaHHS JUIsI HApOIIyBaHHS 0a30BOi
cemantuku, fine-tuning mas mBHaKOi creriamizamii Ha aHOTOBAHHMX JAaHUX, JTOMEH-
aJIanTalis s MoJ0JIaHHsI PO301KHOCTEH MIXK 3arajIbHUMU i I[IIbOBUMH TeKcTaMH, few-
shot learning as HU3BKOPECYPCHUX CIICHAPIIB Ta MOCTIHHE HABYAHHS JIJIs 3a0€3MeYeHHS
CTIAKOCTI JI0 €BOJIIOIIIOHYIOYOTO KOHTEHTY.

OTtpumaHi y JIpyroMy po3/iii TEOPETUYHI 1 MPaKTHYHI BUCHOBKH (POPMYIOTH
METOAOJIOTIYHE MIATPYHTS I MOOYJOBH CHCTEMH pPO3II3HABaHHS MAaHIMYJIATHBHUX
TexHIK. Takox oOrpyHTOBaHO BHUOIp Mojeni ¥ crparterii HaB4aHHS, SKI OyAyTh

peanizoBaHi 1 OIlIHEeH1 Y HACTYITHUX PO3/iIax.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 46
AHaniz MaHIMyJIATUBHOCTI HOBUH 13 BUKOPUCTaHHSM alITOPUTMIB MAIIMHHOTO HABYaHHS

3 HABYAHHS MOJEJIEA

VY 1upoMy po3aiuii AOCHIIKYEThCS MPOIEC HaBYAHHSA MOJENEH sl 3amad span-
neTekiii 1 kmacudikaiii MaHINyJIITUBHUX TEXHIK Y TEKCTOBUX JaHUX, IO CTAHOBUTH
OCHOBY PO3pOOKHM 3aCTOCYHKY JUIsl TIOIIYKY Ae3iHdopmaillii. 30kpema, po3rsaacThCs
BalIJaIis AaHMX, BKJIIOYAIOYM IIATOTOBYl eTamu. Jlo HMX HaleXaTh OYHIICHHS,
HOpMaJi3allisl 1 aHOTalid, K1 TOTYIOTh BXIJHI JAaHl 10 €(peKTUBHOro HaB4YaHHs. Takox
OMHUCAHO Tpollec O0e3MOCEPEeTHHOr0 HABUAHHS 13 BUKOPUCTAHHSIM TpaHC(HOpMEpHHX
moenel, 3okpema XLM-ROBERTa-large, 3 akiieHToM Ha HalaliTyBaHHS MapaMeTpiB i
ajanTalio 0 O0COo0JUBOCTEHl 0araTOMOBHHUX TEKCTIB JUId 3a0e3ledueHHs] BUCOKOI

TOYHOCTI PO3ITi3HABAHHS MAaHIMYISITUBHUX MATEPHIB.
3.1 [IlinroroBka aaracerty JAjs HaBYaHHsI MojeJii Span-detection

[Tporiec miATOTOBKHM JMaHMX IS MOJEN SPan-aeTeKxilii, mooyIoBaHUN Ha OCHOBI
tpanchopmepHoi apxitektypu XLM-ROBERTa-large, € ¢ynmamenransauM eramom,
KUY 6e3MocepeIHRO BIUIUBAE HA 3JJaTHICTh MOJIeI1 €()eKTUBHO BUSBIISITH MAaHIMYJIATHBHI
CEerMEHTH B TEKCTOBHX JaHuX. Lle¥ mpoliec oXOIuroe KOMIUIEKCHY MOCTiAOBHICTh i,
BKJIFOYAIOUM 3aBaHTA)KEHHS, OYHIICHHS, HOpMaJli3allifo, aHOTAIlil0, BHUPIBHIOBaHHS 1
OpraHizaiilo JaHUX Yy 3pydyHHd i1 HaBuaHHS Qopmar. KokeH eram peTenbHO
IIPOJIyMaHMH 13 ypaxyBaHHSM cIieiQiKy 3a71a4i, MOJIE1 i 3araIbHOPUUHITUX MTPAKTHK
00OpOOKH TaHUX y MAIIMHHOMY HaBYaHHI.

[lepmmii eTan mependOayae 3aBaHTAXKEHHsS HaHUX 13 Qaitry y dopmati parquet
(train.parquet) 3a momomororo ¢ynkiii load_data, sika BukopuctoBye 6i0aioTeky pandas
st eeKTUBHOTO YHWTAHHS CTPYKTYpOBaHWX maHuX. Jlatacer i3 mpeacTaBiICHUM
PO3MIUPEHHSAM OOHPAETHCS 3aBISIKH HOTO KOMITAKTHOCT1 M MIATPUMII CTHCHEHHS, IO
0COOJIMBO KOPUCHO TPU pOOOTI 3 BETUKUMHU HAOOpaMu TaHUX, TAKUMH SIK KOPITYC TEKCTIB
i3 aHortamismMu. [louaTkoBe OuwWIICHHS (OKYCYe€ThCs Ha CTOBMI trigger_words, skwmii
MICTUTh aHOTaIlii crnaHiB y Burisya map (Start, end). Buxopuctanus metony fillna()
3aMIHIOE B1JICYTHI 3HAYEHHS MOPOKHIMHU pAIKaMH, a byHKITIS

process_numpy_trigger_words KoHBepTye NUMPY-MacHMBH B CIIHCKH KOPTEXKIB,

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 47
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

BIJIKM/IaI0YM HEKOPEKTHI J1aHl 3 HENPAaBUJIbHUMH TUIIAMH YU po3MipaMu. Takuil miaxig €
CTaHJAPTHUM JUIsl TIONMEpPEHbOI OOpOOKM AaHOTOBAHMX JAHUX, OCKUIBKH BIH
cTaHaapTusye (opmar CHaHiB 1 yCyBa€ MIYMOBI apTepakTH, TakKi sIK MOPOKHI MACUBH YU
HeBignoBigHocTi. JlomatkoBa ¢inbrpariis BamigHux iHgekciB (valid_indices) Bumanse
TEKCTH, 110 € TOpOoXHIMU abo He € psAnkamu. Bumieonucanuid migxix BiAnoBigae
3arajJbHONPUUHATI TPAKTULI BHUAAJIEHHA <IIYMHUX» 3pa3KiB Iepej MOAAIbLION

o0poo6xkoro (puc. 3.1).

def load_data(file_path):
"""Load data from parquet file"""
df = pd.read_parquet(file_path)
return df

de

e

process_numpy_trigger_words(trigger_array):
"""Convert numpy array of trigger words te list of tuples""

if not isinstance(trigger_array, np.ndarray) or trigger_array.ndim == @ or trigger_array.size == 8:

return
result =
if trigger_array.ndim == 2 and trigger_array.shape[1] == 2:

for arr in trigger_array:

if np.issubdtype(arr.dtype, np.number) and len(arr) == 2:
try:
start, end = int{arr[@]), int(arr[1])

if start < end:
result.append((start, end))
except (ValueError, TypeError):

continue
elif trigger_array.ndim == 1 and trigger_array.dtype == ‘object’:
for item in trigger_array:
if isinstance(item, (list, tuple, np.ndarray)) and len(item) == 2:
try:

start, end = int{item[®]), int(item[1])
if start < end:
result.append((start, end))
except (ValueError, TypeError):
continue
return result

def main():

print(“Loading training data...")

train_df = pd.read_parquet(”/kaggle/input/manip-dataset/data/span_detection/train.parquet”)

print("Processing trigger words...")

train_df|['trigger_words'| = train_df|’trigger_words’|.fillna('').apply(lambda x: x if isinstance(x, np.ndarray) else np.array([])
train_df['trigger_words_processed’ | = train_df[trigger_words'|.apply(process_numpy_trigger_words)

texts = train_df[content'].tolist()

spans = train_df[' trigger_words_processed'].tolist()

print(f"Total raw examples: {len(texts)}")

valid _indices = [i for 1, txt in enumerate(texts) if isinstance(txt, str) and len(txt.strip()) > @
texts = [texts[i] for i in valid_indices
spans = [spans(i] for i in valid_indices

print{f“Using {len(texts)} non-empty text examples for training/validation."]]

Pucynok 3.1 — 3aBaHTa)keHHs, OUMIIEHHS 1 PUTbTpalliss Habopy MaHUX

HactynmHuM KpokoM € po30UTTS JaHUX Ha TPEHYBAJIBbHY 1 BaliJaIliiHy BUOIPKU Y
cuniBBimHOMmEeHH] 85/15 3a momomororo ¢yHKIi train test split 13 QikcoBaHUM
napametpom random state=SEED=42. BuxopuctanHs ¢ikcoBaHOTO CHIYy €
CTaHJAPTHOIO MPAKTHKOI B MAIIMHHOMY HaBYaHHI, fKa 3a0e3medye BiATBOPIOBAHICTH
PE3YIABbTATIB 1 103BOJISIE MOPIBHIOBATH EKCIIEPUMEHTH B P13HUX YMOBaxX. CIiBBITHOIICHHS
85/15 BuOpaHO K KOMOPOMIC MK PO3MIPOM TPEHYBaJIbHOTO HAOOPY, HEOOXITHOTO JJIS

CTaOUIBHOIO HaBYaHHS CKiIagHux Mopenei, Takux sk XLM-RoBERTa-large, i1

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 48
AHaniz MaHIMyJIATUBHOCTI HOBUH 13 BUKOPUCTaHHSM alITOPUTMIB MAIIMHHOTO HABYaHHS

dbopmyBaHHA BajdigaliifHOr0 HAOOpy, JOCTATHBOTO JJii HAJIAHOI OLIHKHU
NpOAyKTUBHOCTI. Llel miaxia BiANOBIAA€E 3araJbHONPUUHATUM CTpaTErisiM pPO3MOALTY
JaHUX, 0COOJIMBO B 3aJadax 13 0OMEKEHHUM OOCSITOM aHOTOBAaHMX HAaHMX, JI€ BAXKIHUBO
30eperTu penpe3eHTaTUBHICTb 000X MIAMHOXHUH. BiacyTHicTh — cTpatuikarii
oOrpyHTOBaHa TUM, IO 3aja4ya SPan-neTexiii He nepeadavae OalaHCyBaHHs KJIAciB Ha
piBH1 3pa3kiB, a (DOKYCYeThCA Ha pO3MOJUIlI CHaHiB, IO OOpOOJISIETHCS Ha eTarli
BTpaT (auB. Jlonarok b).

TokeHi3alig TEKCTIB 3AIMCHIOETHCS 3a moroMoror AutoTokenizer 13 mMomeni
XLM-RoBERTa-large uyepe3 d¢ynkuito align _tokens and spans, mo € KIIOYOBUM
eTaroM JUIsl ajanTalii CHMBOJIBHMX JIaHMX JI0 QopMary, MPHAATHOTO JUIA
tpanchopmepis. [lapamerp return offsets mapping=True reHepye BiiOOpakKeHHS MiX
CUMBOJIAMH OPHUTIHAJIBHOTO TEKCTy W TOKCHaMH, IO € HEOOXITHUM ISl TOYHOTO
BUpiBHIOBaHHS cmaHiB. OOpi3aHHS TEKCTIB 10 MaKCUMaJbHOI JIOBXKMHHU
(max_length=MAX LEN=512) 3acTOoCOBY€TbCS [Jii YHUKHEHHS TI€PEBAHTAKCHHS
ImaM’sTi MoJiel 1 3a0e3leueHHs] OJHAKOBOI JOBKMHHU BXITHHUX MOCIIZOBHOCTEH, IIIO €
CTaHJAPTHOIO MPaKTHKOK s TpaHchopmepHux apxitektyp. [lapamerp
add special tokens=True nonmae cnemianbhi TokeHu ([CLS] 1 [SEP]), siki € wacTunOIO
cnenudikarii XLM-RoBERTa i BaxiuBi 1711 KOPEKTHOT 00pOOKH KOHTEKCTY MOJICILIIO.
Binknagenns nagaiary (padding=False) nHa eranm O6ardyBaHHS 103BOJISE€ ONTHMI3yBaTH
BUKOPHUCTAHHS MaM’ATi Ha 1boMYy eTari (quB. lonatok b).

BupiBHioBaHHs cmaHiB 13 TokeHamMu Oa3yeThcsi Ha BIO-cxewi, sika € MIKAPOKO
NPUUHATOIO I 3adad cermeHramii, Takux sk Named Entity Recognition (NER),
aJIalITOBAHOIO ISl MAHIMYIATUBHUX CIaHiB. MITKH MIPUCBOIOIOTHCS] HACTYITHUM YHHOM:

— 0 m1s TokeHiB mo3a cnanamu (Outside);

— 1 mig mouatky crana (Beginning);

— 2 g BHYTpinmHbO1 yacTuHu cnana (Inside).

Cnanu copTyrOThCS 3a MOYATKOBUMU MO3ULIAMU (sorted spans) aJist MOCHII0BHOT
00poOKH, a MEPEKPUTTS MK TOKEHOM 1 CIIAHOM BH3HAYA€THCS 4Y€pPE3 YMOBY METONY

max(start, span_start) < min(end, span_end). SIKII0 TOKEH MEPETUHAETHCS 31 CHIAHOM,

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 49
AHaniz MaHIMyJIATUBHOCTI HOBUH 13 BUKOPUCTaHHSM alITOPUTMIB MAIIMHHOTO HABYaHHS

Horo MiTka BU3HA4YaeThes sIK 1 abo 2 3a1eXHO Bij Moro mo3uiii BIIHOCHO MOMEPEIHIX
TOKEHIB 1 CIIaHIB, 3 YpaxyBaHHSM JIOTIKM MOYaTKy W MpoAoBkeHHs cnaHa. Mitka 100
3acTocoByeThes 0 padding ado cremiaabHUX TOKEHIB, IO € 3BUYAHOIO0 MPAKTHKOIO B
PyTorch nns irHopyBaHHS IMX MO3ULIM mmig 4Yac oOuuciaeHHs BTpar. llapamerp
SPAN_MERGE_DISTANCE=1 no3Bosie 00’ eqnyBaTi OJU3bKI CIIaHU, SIKIIO BiJACTaHb
MDK IXHIMH KIHIIEM 1 MOYaTKOM MEHIIAa 3a 1 CUMBOJI, 110 KOPUTYE MOMJIMBI MIOMUJIKU
aHOTAallil, TOKPAIlYIOUH KOPEKTHICTh BUPIBHIOBAHHS 1 B11I0Opa)katouu rHYYKUN MIX1 10
00poOKu HeogHO3HaUHUX MeX (1uB. JogaTok b).

CrBOpeHHsI JaTaceTy peanizyeThcs depe3 kiaac ManipulationSpanDataset, sikwuii
IHIIATI3YETBCA 3 TOKEHI30BaHMMHU TeKcTaMu W MiTkamMu. KokeH 3pa3ok BKIIIOYAE
input_ids, attention_mask, labels i offset_ mapping, mo 30epiraroTbcst B CIHCKY
encodings. Bukopucrtanus 0i0smioTeku tqdm ast BiCTEeXKEHHS MPOrpecy TOKEHi3alii
JI03BOJISIE MOHITOPUTH TPUBAIICTh OOPOOKM BEIMKHUX HAOOPIB JaHMX, IO € 3PYYHHM
IHCTPYMEHTOM JIJIS BIUTa[IKK ¥ OI[IHKM MPOJAYKTUBHOCTI. MeTon getitem koHBepTye
naHi B TeHzopu Tumy torch.long, mo € cranmaptHUM A TpaHCHOPMEPHUX MOJICIEH,
3abe3meuyroun cymicHicTh i3 PyTorch. ®yukmis collate_fn y Dataloader aunamiuno
najauTh 6aTyi 10 MAKCUMAJIBHOT IOBKUHU B MEXaX MOTOYHOT0 0aTyy, BUKOPUCTOBYIOUU
tokenizer_pad_token_id ms input_ids i mymeoBi Mackm s attention_mask. Mitku
padding mo3uiiii BcTaHOBIMIOIOTEHCS AK 100, 1110 BiAMOBigae IrHOPYBAHHIO I[UX TOKEHIB Y
Brpari WeightedFocalLoss, mo € craHgapTHOK MPAKTUKOK Il YHUKHCHHS
CHOTBOpeHHs TpazieHTiB. [Tapamerp batch_size=2 oOpano sk KOMIPOMIC MK 00CATOM
nam’sati GPU 1 mBHAKICTIO HaBYaHHSA, TOMAI K NUM_WOrkKers=2 akTuBye mHapajieibHe
3aBaHTAXKEHHS JIaHWX, M0 3HAYHO TMPHUCKOPIOE TMIATOTOBKY 1 BBaXXAE€ThCSH
3arajJbHONPUWHATAM T1AX0A0M JJIS ONITUMI3allii MPOAYKTHBHOCTI B 33]]a4ax 13 BETUKIMHU

Habopamu naHux (puc 3.2).

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 50
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

def collate_fn{batch):
max_len = max{[len(item["input_ids"]) for item in batch])
tokenizer_pad_token_id = AutoTokenizer.from_pretrained(MODEL_NAME).pad_token_id
input_ids_padded =
attention_mask_padded =
labels_padded =
offset_mappings =
texts =
for item in batch:
padding_len = max_len - len(item["input_ids"])
input_ids = torch.cat([item["input_ids"], torch.tensor([tokenizer_pad_token_id] * padding_len, dtype=torch.long)])
attention_mask = torch.cat([item["attention_mask”], torch.zeros(padding_len, dtype=torch.long)])
labels = torch.cat([item|"labels"], torch.tensor([-188] * padding_len, dtype=torch.long)])
input_ids_padded.append(input_ids)
attention_mask_padded.append(attention_mask)
labels_padded.append(labels)
offset_mappings.append(item["offset_mapping”] + [(8, @)] * padding_len)
texts.append(item| "text"])
return
“input_ids": torch.stack(input_ids_padded),
"attenticn_mask”: torch.stack(attention_mask_padded),
“labels": torch.stack(labels_padded),
"offset_mappings": offset_mappings,
“texts": texts,

def main():
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
print("Creating datasets (this may tske a while)...")
train_dataset = ManipulationSpanDataset({train_texts, train_spans, tokenizer, max_len=MAX_LEN)
val_dataset = ManipulationSpanDataset(val_texts, val_spans, tokenizer, max_len=MAX_LEMN)
print("Creating dataloaders...”)
train_dataloader = Dataloader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
collate_fn=collate_fn,
num_workers=2
)
val_dataloader = Dataloader(
val_dataset,
batch_size=BATCH_SIZE * 2,
shuffle=False,
collate_fn=collate_fn,
num_workers=2

Pucynok 3.2 — CTBOpeHHsI 1aTaceTy ¥l 6aTdyBaHHS

OCKUIbKM JaHI MOXYTh MaTH 3HAYHMW JucOalaHC MDK KiacaMu (HampuKIiIa,
OinpIricTh TOKEeHIB mo3Hadeni sk Outside, Toxi sk Beginning i Inside € wmenm
MOLIMPEHNMH), 3aCTOCOBYEThCI KacTomHa (¢yHkiis Brpat WeightedFocalloss.
[Tapamerp alpha=[0.1, 0.45, 0.45] Busnauae Baru misa kiaaci (0 mis Outside, 0.45 ms
Beginning, 0.45 ms Inside), 1o q03BosIsie KOMIIEHCYBATH AUCOAIaHC, HATAl0UX OLIbIITY
Bary MEHIII MPEACTaBICHUM KiacaMm. 3HadeHHs gamma=2.0 pokycye Moiens Ha BaKKUX
it kiacugikarlli mpukianax, Mo € MomyJSIPHUM MiAXOAOM Yy 3ajadax i3 mrymoM ado
CKJIQJIHIMU MeXaMH. BUKOpPHCTaHHS I[bOTO MPHHIMAIYY 3MEHIIYE BHECOK 100pe
KJIacu(pikoBaHUX 3pa3KiB i migkpecitoe moMuiku. [Tapamerp ignore_index=-100 iraopye
MAJIIHTOB] MO3MINIT i 9ac OOYMCICHHS BTpaT, IO € CTAaHJAPTHOIO MPAKTUKOIO B

PyTorch mis yHUKHEHHS CIOTBOPEHHS TPAII€HTIB Bijl HEPEJIeBaHTHUX TOKeHIB (puc 3.3).

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 51
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

class WeightedFocalloss(nn.Module)
def __init__(self, alpha=[6.1, ©.45, 8.45], gamma=2.8, ignore_index=-188):
super (WeightedFocalloss, self).__init__()
self.alpha = torch.tensor(alpha).float()
self.gamma = gamma
self.ignore_index = ignore_index
self.log_softmax = nn.LogSoftmax(dim=-1)
def forward(self, inputs, targets):
mask = targets != self.ignore_index
valid_inputs = inputs[mask
valid_targets = targets[mask
if valid_targets.numel() == @:
return torch.tensor(8.8, device=inputs.device, requires_grad=True)
if self.alpha.device != inputs.device:
self.alpha = self.alpha.to(inputs.device)
log_probs = self.log_softmax(valid_inputs)
gathered_log_probs = log_probs.gather(1, valid_targets.unsqueeze(1)).squeeze(1)
probs = torch.exp(gathered_log_probs)
alpha_t = self.alpha[valid_targets
focal_less = alpha_t * torch.pow(1 - probs, self.gamma) * (-gathered_log_probs)
return focal,luss.mean()‘

Pucynok 3.3 — O0poOka aucOanaHcy KJIaciB Ta MiAroToBKa J0 BTpaT

[IpencraBiena MIArOTOBKA JaHUX TapaHTye, MO0 MoOJeNb e(PEKTUBHO
HAaBYATUMEThCSl PO3MI3HABATU SK PIAKICHI MOYATKM W CEpeJMHM CIaHIB, TaK 1 4acTi

MO3HAYEHHS 11032 CIIaHAMU, aJaNTyIYUCh 10 CHeU(IKY MaHITyJISITABHUX TEKCTIB.
3.2 IlinroroBka maracery Ajs HaBYaHHsI MozeJti class-detection

[epminii etan po3NOYUHAETHCS 3 3aBAHTAXKEHHS JAHUX 1 TOYATKOBOT'O OUMIIEHHS,
mo Bkiaovae yukmiro clean_text, sika 3aminroe URL-agpecu Ha mieiicxonmep [URL],
yCyBa€ HAJUIMIIKOBI MPOOUTN i HOpMAI3ye TEKCT, IO € CTAHJAPTHOIO MPAKTUKOIO IS
BUJIAJICHHS IIIyMOBHUX €JEMEHTIB, SKI MOXYThb 3aBaJIUTH MOETi. SIKIIO CTOBICIHh
techniques mpucyTHiii, BiH mapcUThCs 3 PAAKIB y CIIUCKH 3a gormomororo ast.literal _eval,
a TIOTIM PO3KJIAJAETHCS HAa O1HAPHI MITKH JUII KOXKHOI 3 10 MaHIMyJIATUBHUX TEXHIK, 1e 1
BKa3ye€ Ha HasgBHICTb TexHikH, a 0 — Ha i1 BimcyTHICTh. JloJaTKOBHWII CTOBMEIb
manipulative mo3Hauae TEKCTH 3 MPUHAWNMHI OJHIEID TEXHIKOI, IO TIOJETIIyE
cTpatudikamiro. BusBienHs moBu depe3 detect language 6Gasyerbcss Ha HasSBHOCTI
cnenupiyHUX YKPaTHCHKUX JITEP, 10 JO03BOJISIE aAaNTyBaTh MOJIEIh J0 6araTOMOBHOTO
KOHTEKCTY, X04a 1€l KPOK € CITPOIIEHUM 1 MOXKe OYTH pO3IMIUPEHUHN Y MaHOyTHbOMY IS

TOYHINIOTO po3mizHaBaHHs (puc. 3.4).

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 52
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

def analyze_dataset(df):
logger.info{“Analyzing dataset...")
print("Analyzing dataset...")
technique_counts = {technique: df[technique].sum() for technique in TECHNIQUES
total_instances = len{df)
logger.info(f"Total instances: {total_instances}”)
print(f"Total instances: {total_instances}")
logger.info(~Class distribution:")
print("Class distribution:!”)
for technique, count in technigue_counts.items():

percentage = (count / total_instances) #* 188

logger.info(f"{technique}: {count} instances ({percentage:.2f}%)")
print(f"{technigue}: {count} instances ({percentage:.2f}%)")
cooccurrence = pd.DataFrame(8, index=TECHNIQUES, columns=TECHNIQUES)
for _, row in df.iterrows():
for i, techl in enumerate(TECHNIQUES):
if row[techl] == 1:
for tech2 im TECHNIQUES:
if row[tech2] == 1:

cooccurrence.loc[techl, tech2] += 1
logger.info(“Co-cccurrence of technigues:®)
print("Co-occurrence of technigues:")
for i, tech in enumerate(TECHNIQUES):
co_techs = [(other_tech, cooccurrence.loc|tech, other_tech])
for other_tech in TECHNIQUES if other_tech !'= tech
co_techs = sorted(co_techs, key=lambda x: x[1], reverse=True)[:3
logger.info(f"{tech} frequently co-occurs with: {co_techs}")
print(f"{tech} frequently co-occurs with: {co_techs}")
df|['text_length’'] = df['content'].apply(lambda x: len(str(x).split())
avg_length = df['text_length'].mean(
median_length = df['text_length'].median()
max_length = df['text_length'].max()
logger.info(f"Text length statistics: Avg={avg_length:.1f}, Median={median_length}, Max={max_length}"}
print(f"Text length statistics: Avg={avg_length:.1f}, Median={median_length}, Max={max_length}")
over_limit = (df['text_length'] > CONFIG['max_length']).sum()
logger.info(f"Texts exceeding max_length ({CONFIG|'max_length): {over_limit} ({over_limit/len(df)*188:.2f}%)")
print(f"Texts exceeding max_length {{CONFIG['max_length)+ {over_limit} ({over_limit/len{df)x188:.2f}%)")
class_weights =
for technique in TECHNIQUES:
pos_samples = df|[technigue].sum{)
if pos_samples > @:
weight = total_instances / (2 * pos_samples)
class_weights|technique] = min(weight, 18.8)
else:
class_weights|technique] = 1.8
return class,wnghtd

Pucynok 3.4 — OuuinieHHs 1 BUSIBJIEHHS MOBH TEKCTiB

Hactymuuii eram BKJIIOYae JACTalbHUM aHami3 JaHUX depe3 (YHKIIIO
analyze_dataset, sikuii € BaXJIMBUM JIJIS1 PO3YMIHHS PO3MOJLIY KJIACiB 1 MOTEHIIIHHOIO
aucOanancy. IlimpaxyHOK KiUTBKOCTI 3pa3KiB ajis KOskHOI TexHiku (technique_counts) i
o0uKCICHHS TXHBOT YaCTKHU Bif 3arajabHOi KiTbKOCTi 3paskiB (total instances) mosBossie
OI[IHUTH YaCTOTHICTh KOXXHOI MAHINMYJIATUBHOI TEXHIKHM. AHai3 CHiBIAIiHb
(cooccurrence) BUsIBIISIE, SIKi TEXHIKHA 9acTO 3’ ABJSIOTHCS pa3oM, 110 MOXKE BKa3yBaTH Ha
KOpeJdIii Ta BIUITMBATH HA CTparerito HaB4aHHsI. OOYMCIEHHS CTAaTUCTUKH JOBXKHUHH
TEKCTIB (cepeaHe, MefiaHa, MAaKCUMYyM) 1 TepeBipKa MEPEeBUIICHHS MaKCHMaJIbHOI
noexkuau (CONFIG['max_length']=512) nomomaratoTh OLIHUTH MPUAATHICTH 0OpaHOTO
napameTpa oOpizaHHs. Bary xmaciB 0OYHCITIOIOTH SIK BIAHOIIEHHS 3arajibHOi KUTBKOCTI
3pa3KiB JI0 MOJBIHHOT KITBKOCTI MO3UTUBHUX 3pPa3KiB KOXKHOT TEXHIKH, 13 00MEKECHHAM
MakcuMasibHOro 3HadeHHS 10.0, Mo € cTraHgapTHUM METOJOM IS KOMIICHcAIlil
nucOanaHcy B MYJbTUICHONOBUX 3ajayax, 3a0e3neuyroud Oulblly Bary piaKiCHUM

kiaacaM (puc. 3.5).

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 53
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

def analyze_dataset(df):
logger.info(“Analyzing dataset...")
print("Analyzing dataset...")
technique_counts = {technigue: df[technique].sum() for technique in TECHNIQUES
total_instances = len(df)
logger.info(f"Total instances: {total_instances}”)
print(f"Total instances: {total_instances}")
logger.info("Class distribution:")
print("Class distribution:”)
for technique, count in technigue_counts.items():

percentage = (count / total_instances) * 108

logger.info(f"{technique}: {count} instances ({percentage:.2f}%)")
print(f"{technique}: {count} instances ({percentage:.2f}%)")
cooccurrence = pd.DatsFrame(8, index=TECHNIQUES, columns=TECHNTQUES)
for _, row in df.iterrows(}:
for i, techl in enumerate(TECHNIQUES):
if row[tech1] == 1:
for tech2 in TECHNIQUES:
if row[tech2] == 1:

cooccurrence.loctechl, tech2] += 1

legger.info(“Co-occurrence of technigues:™)
print("Co-occurrence of technigues:")
for i, tech in enumerate(TECHNIQUES):

co_techs = [(other_tech, cooccurrence.loc|[tech, other_tech])

for other_tech in TECHNIQUES if other_tech != tech

co_techs = sorted{co_techs, key=lambda x: x[1], reverse=True)[:3

logger.info(f" {tech} frequently co-occurs with: {co_techs}")

print(f"{tech} frequently co-occurs with: {co_techs}")
df['text_length'] = df['content'].apply(lambda x: len{str(x).split()))
avg_length = df["text_length'].mean()
median_length = df[text_length'].median()
max_length = df["text_length'].max()
logger.info(f'Text length statistics: Avg={avg_length:.1f}, Median={median_length}, Max={max_length}")
print(f"Text length statistics: Avg={avg_length:.1f}, Median={median_length}, Max={max_length}")

over_limit = (df['text_length'] » CONFIG['max_length']).sum()
logger.info(f'Texts exceeding max_length ({CONFIG['max_length']}): {over_limit) ({over_limit/len(df)*188:.2f}%)")
print(f'Texts exceeding max_length ({CONFIG['max_length']}): {over_limit} ({over_limit/len{df)+1e@:.2f}%)")

class_weights =
for technigue in TECHNIQUES:
pos_samples = df[technique].sum({)
if pos_samples > B:
weight = total_instances / (2 # pos_samples)
class_weights|technique] = min(weight, 18.8)
else:
class_weights[technique] = 1.8
return class_weights|

Pucynok 3.5 — Ananiz Habopy 1aHUX 1 0OYMCIICHHS Bar

Po36utTs naHuXx Ha TpEeHYBAJIbHY 1 BajifaliifHy BHOIPKH BHKOHYETBHCS Yepe3
¢ynukiiro prepare_dataloaders i3 Bukopucrtanusm train_test split y cmiBBimHOIIEHHI
80/20. Bukopucranus crpatudikaiiii 3a cromiem manipulative (HasBHICTh IpHUHARMHI
ONHI€T TEeXHIKW) 3a0e3mnedye 30aJlaHCOBAaHUN PO3MOJUIT TMO3WTHUBHUX 1 HETaTUBHUX
3pa3KkiB, IO € KPUTHYHUM [JI1 MYJIbTHICHOIOBOI Kiacudikamii 3 MOXIMBUM
nucOaIaHCoOM. dikcoBaHUl TapaMeTp random_state=SEED=42 rapanrye
BiJITBOPIOBAHICTD, [0 € CTAHIAPTHOIO MPAKTUKOK JJIsl TIOPIBHSHHS pe3ynbTariB. llei
MIAX1T TO3BOJISIE 30€PEeTTH PENpPe3eHTATHBHICTE 000X HAOOPIB, IO OCOOINBO BaXKIHBO
JUIS 33]1a4 13 HEOTHOPITHUM po3MoaiaoM kiaciB (auB. Jlomarok b).

TokeHizarlis BuKoHyetbes uepe3 AutoTokenizer i3 mogemi XLM-RoBERTa-large
y xiaci ManipulationDataset. ITapamerpu max_length=512, padding='max_length' i
truncation=True 3a06e3neuyroTh 00pi3aHHS TEKCTIB 10 PiKCOBAHOI TOBKUHU ¥ J101aBaHHS
MajIIHTy, 10 € CTaHAapTHUM s TpaHchopmepiB mis yHidikarii BXITHUX TaHUX.
AyrmenTariis ganux gepe3 data_augmentation i3 iimosipnicTio 0.5 i Buganenusm 20%

CJIB (SKIIO TEKCT JOBINWK 3a 5 CIIiB) aKTUBYEThCSA 3 iMOBipHicTIO augment_ratio=0.2

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 54
AHaniz MaHIMyJIATUBHOCTI HOBUH 13 BUKOPUCTaHHSM alITOPUTMIB MAIIMHHOTO HABYaHHS

JuIie s TpeHyBajdbHOro Habopy. Llel MeTo1 € mMpoCcTOI0 CTpaTeriero sl PO3IIUPEHHS
JAHUX, TIABUIIYIOUM CTIMKICTH MOJENl J0 Bapiailiid, xoua BiH HE 3MIHIOE MITKH, IO

BIJIMOB1/Ia€ MYyJIbTUIICHOIOBIN npUpoAl 3a1aul (puc. 3.6).

def data_sugmentation(text, techniqgues):
if random. random() < 8.5:
words = text.split()
if len(words) > 5
indices_to_delete = random.sample(range(len(words)), int(len(words) * 8.2})
words = [word for i, word in enumerate{words) if i not in indices_to_delete
text = ' '.join(words)
return text, technigues

class ManipulationDataset(Dataset):

def __init__(self, texts, targets=None, tokenizer=None, max_length=512, augment=False):
self.texts = texts
self.targets = targets
self.tokenizer = tokenizer
self.max_length = max_length
self.augment = augment

def __len__(self):
return len(self.texts)

def __getitem__(self, idx):
text = str(self.texts[idx])
text = clean_text(text)
if self.augment and self.targets is mot None and randem.random() < CONFIG[“augment_ratio”]:

text, _ = data_augmentation(text, self.targets/idx])
encoding = self.tokenizer
text,

max_length=self.max_length,
padding='max_length',
truncation=True,
return_tensors='pt
)
item =
input_ids': encoding['input_ids’].flatten(),
attention_mask’: encoding|'sttention_mask'].flatten()

if self.targets is not None:
item['targets'] = torch.tensor(self.targets[idx|, dtype=torch.float)
return item

Pucynok 3.6 — TokeHi3arris i ayrMeHTallisi TEKCTiB

BukonanHs mpeicTaBieHMX eTamiB OOpoOKM Jaracery 3a0e3mnedye sIKiICHY
HiATOTOBKY JAaHUX, aalTOBaHy 10 MYJIBTHIICHOJIOBOT Kitacu(iKaiii TEXHIK MaHITYISAIIi1

B 0araTOMOBHOMY KOHTEKCTI.
3.3 Hapuanus MojaeJi kaacudikauii TexHik MaHimyJasuin

[Ipouiec HaByaHHs Moxeni kiacudikaiii, 3acHOBaHOi Ha TpaHc(opMepHii
apxitektypi XLM-RoOBERTa-large, € xkommnexkcHuM eramom, CHOpSIMOBaHHM Ha
ONTUMI3aIlil0 MapaMeTpiB Mojem s e(EeKTHBHOTO PpO3MI3HABAaHHA JIECATU
MaHIMYJATHBHUX TEXHIK y TekcTtax. Lled mpoliec BKIOYAE iHIIIaTi3amico MOJEI,
HAJAIITYBaHHA ONTHMI3aTopa W IJIaHyBaJIbHUKA, TPEHYBAaHHS 3 HAKOMHYCHHIM
TpaJi€HTIB, OIIIHKY Ha BaligalliiHOMy HAOOpi, 3aCTOCYBaHHS paHHBOI 3YNMUHKH U
30epexeHHs Halkpamoi mojaeni. HaBuanHs aganToBaHO 10 MyJIbTHIICHOIOBOT IPUPOIH
3a/1a4i, JIe KOKEH TEKCT MOKE MICTUTH KUJIbKa TEXHIK OJJHOYACHO, 1 BpaxoBye cienudiky

0araToMOBHMX JIaHMX (YKpaiHChKa i pOCIiiChKa).

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 55
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

[Mporiec HaBUaHHS PO3MOYMHAETHCS 3 iHImiami3amii monxeni ManipulationClassifier,
sika 0a3yetbest HAa XLM-R0OBERTa-large 3 nomaBanusam BnacHoro kinacudikaropa st 10
TeXHiK. MoJenb TEepeHOCHThCS Ha MPUCTPIA, IO € CTAaHAAPTHOIO MPAKTUKOI IS
npuckopeHHst obuuciieHb. Onrtumizatop AdamW HanamrToBYETbCS 3 TPYIyBaHHIM
napaMeTpiB: Baru 3 weight_decay=0.01 3acTocoByrOThCS 10 BCiX MapaMmeTpiB, okpim bias
i LayerNorm.weight, nme weight decay=0.0, 1m0 3amo0irae HaJAMIpHOMY
peryspusainiinoMy eQpekTy Ha HopMmaiizoBaHi mapu. [loyaTkoBe 3HAYEHHS MIBUIAKOCTI
HaBuaHHs learning_rate=1.8e-5 e TumoBuM ans TpaHchOpPMEpiB, a IUIAHYBAIbHUK
KOCHHYCHUH a0o miHidHUI 13 warmup_ratio=0.1 3abe3mneuye moCTynoBe 30UIbIICHHS
MIBUAKOCTI Ha TOYaTKy, [0 CTaOUIi3ye HaBUaHHA. 3arajibHa KUIbKICTh KpPOKIB
OO0YHCITIOETHCS 3 ypaxyBaHHSIM HAKOTTMYCHHS IpaJIiEHTIB
(gradient_accumulation_steps=4), mo 103BoJsi€ €PEKTUBHO MPALIOBATH 3 OLIBIITUMHU
O0aTyamu Ha oomexeHux pecypcax GPU (nuB. Jlonarok b).

TpenyBaHHs Ha OJIHIH €MMOCI BUKOHYEThCS uepe3 GpyHKiiro train_epoch, ae Moaensb
HepEeBOANTHCS B peskuM TpenyBauHs (model.train()). Bubip gyHKkIii BTpaT 3a/1e)KuTh Bij
KOH(}Iryparii: 3a 3aMOBUyBaHHSIM BuUKopHcTOBYeThcss BCEWIithLogitsLoss i3 Baramu
ki1aciB (pos_weight_tensor), oOunciaeHMMH Ha OCHOBI AucOaiaHcy, SKIIO
use_weighted loss=True. AnsrepunatuBHo, FocallLoss i3 gamma=2.0 3acTOCOBYy€ThCS
JUIS aKIEHTy Ha BaXXKMX mpukianax, skmo Use focal loss=True. Jleitbn-cmyTinr
(label_smoothing=0.05) mom’sikirye 1iIbOB1 3HAYECHHS, 10 € CTAHIAPTHOI MPAKTHKOFO
VIS MMABUILICHHS y3araJbHEHHS. Haxonnuenns I'PaTi€HTIB
(gradient_accumulation_steps=4) posmomgiiise oOYHMCICHHS BTpaT Ha KiIbKa KPOKIB,
J03BOJISIIOYN €()eKTUBHO TpamoBaTH 3 MeHImUME Oatdamu (batch_size=8). O6pizanus
rpagienTiB (gradient_clipping=1.0) 3amo0irae BUOYXYy Tpaji€HTIB, a OHOBJICHHS
ONTHUMI3aTOpa 3 MJIAHYBATHHUKOM BHUKOHYETHCS MICISI KOXKXHOTO HAKOIMMYEHOTO KPOKY.
[Mporpec BimoOpaxkaeTbcss uepe3 tqdm, mo € 3pydHHEM IHCTYPMEHTOM JIUJIst
MOHITOpUHTY (nuB. JlogaTok b).

Orminka MoJesi BUKOHYEThCS depe3 (yHkiito evaluate y pexumi model.eval() i3

BIIKJIFOUYEHHSAM OOYMCIICHHS TpajieHTIB. IMOBIpHOCTI MPOrHO31B OOUMCIIOIOTHCS Yepes

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 56
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

torch.sigmoid, a moporu mus kiacudikaiii MoXxyTh Oytu ¢ikcoBanumu (0.5) abo
onTUMaTbHUMH, BU3HaueHnMHU QyHkiiero find_optimal_threshold. Ontumanshi moporu
HIYKalOThCA IUIsIXoM niepedopy 3HaueHb Big 0.15 1o 0.85 13 kpokom 0.01, MakcuMHU3yIOUH
F1-score st KOXKHOT TEXHIKH, 110 € aIallTUBHUM I1IX0J0M JI0 MYJIbTHUJICHOIOBHUX 3a1a4
13 naucbanancom. Metpuka macro F1 1 F1 i KoXHOT TeXHIKH OOYHMCIIOIOTHCS s
OILIIHKM 3arajlbHOi MPOJYKTUBHOCTI, a pPE3yJbTaTH 30epiraroTbCs s MOAAIBIIOrO

anamizy (nuB. [lomatok b).
3.4 Hasuauus moaei span-detection

[Ipouiec HaBuaHHA MoOJeni SPan-AeTeKiii, 3acHOBaHOI Ha TpaHChOpPMEpHin
apxitektypi XLM-ROBERTa-large, cnpssmoBanuii Ha ieHTH(IKALIIO MAHITYJISTUBHUX
CEerMEHTIB Yy TeKCTax NUIAXoM kiacudikaiii TokeHiB 3a cxemorw BIlO. Ileit nponec
BKJIFOYA€E TIJTOTOBKY JaHMX, IHIIIANi3allll0 MOJEIl ¥ omTuUMi3aTopa, TPEHYBaHHS 3
HAKOIMMYCHHSIM T'PaIIEHTIB, OI[IHKY MPOJAYKTUBHOCTI Ha BalialiiiHoMy HaboOpi, paHHIO
3YNUHKY Ta MPOTHO3YBaHHS Ha TECTOBHUX AaHMX. HaByaHHS amanTtoBaHO 10 crieludiku
0araTOMOBHHMX TEKCTIB (YKpaiHCBbKO1 1 pOCIHCBKO1) 1 BpaxoBye aucOajaHC KJaciB Ta
00ME)XEHHST 0OUHCITIOBAJIbBHUX PECYPCiB.

[Ipouiec HaB4YaHHS PO3MOYMHAETHCS 3 TMIATOTOBKM JAHUX, BKJIIOYAIOYU
3aBaHTaKCHHS 13 baiimy train.parquet, 00poOKy CIIaHIB gepes
process_numpy_trigger words 1 po30uTTsS Ha TpeHyBanbHY (85%) Ta Baminaminy (15%)
BuOipkn 3 @QikcoBanum random state=SEED=42 nns BigTBOproBaHocTi. Mojenb
AutoModelForTokenClassification i3 XLM-R0OBERTa-large inimianizyerbest 3 Tppoma
kinacamu (O, B, I) 1 mepenocutscs Ha GPU, sikmo moctymuo. Ontumizatop AdamW
BukopuctoBye Layer-wise Learning Rate Decay (LLRD) i3 koedimieHTOM
LLRD RATE=0.9, mo 3HWXye IBHUIAKICT, HAaBYAHHS I HIDKHIX IIapiB MOJEII,
aanTyroud iX TMOBUIBHINIE, MO0 € CTAaHJAPTHOIO TMPAKTHUKOI [JIs TpaHCHOpMEpiB.
[InanyBanbHHUK 13 JIHIAHUM po3irpiBoM (warmup ratio=0.1) cTabinizye Mno4aTKOBi
Kkpoku, a weight decay=0.01 perynsipusye HaBuanus (auB. Jlonatok b).

TpenyBanHs Ha OJHIN emoxi peamidyerbes B ¢GyHKIIi train_model, xe monensb

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 57
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

MIEPEBOIUTHCS B PEKUM TpPEHYBaHHSA. BUKOPHCTOBYEThCS KacTOMHa (YHKIISI BTpaT
WeightedFocalLoss, sika aganTtoBana a0 3ajad i3 aucOalaHcoM KiaciB. IrHopoBaHi
ingekcu (ignore_index=-100) BixmoBigarOTh MaJAIHIOBUM TOKEHAM, I[0 BUKJIIOYAIOTHCS
3 o04MCIIeHb BTpaT.

Brpara HOpPMaJII3y€EThCS Ha KUJIBKICTh KpOKIB HaKOIIMYECHHS
(accumulation_steps=4), 1o 103Bosisi€ ePEKTUBHO MPALOBATH 3 MAJIUM PO3MipoM OaTda
(batch_size=2), posnoainstoun oOYMCIICHHS TPai€HTIB Ha Kiibka iTepariid. [Iporec
HazagHboro mnommupenHs (loss.backward()) BukoHyeTbes s KOXHOro Oatya, a
OHOBJICHHSI Bar ONTUMI3aTOpa BiAOYBAEThCA JIMIIE MICIAS HAKOMUYECHHS T'PAJIEHTIB Ha
accumulation_steps kpokiB a0o HampukiHmi ernoxu. OOpi3aHHS TPaJIEHTIB 10
snaueHns 1.0 (torch.nn.utils.clip_grad_norm_) 3amobirae ix «BHOyXy», M0 €
CTaHJAPTHOIO MPAKTUKOIO IS cTabIi3a1lil HaBYaHHs TIIMOOKUX Mepek. [1icis KokHOro
OHOBJICHHS ONITHMI3aTOp ckuaaeThes (Optimizer.zero _grad()), a maaHyBaJIbHHK OHOBIIIOE
mBuakicTh HaBuaHHs (Scheduler.step()) (auB. JlogaTtok B).

[IporHo3u TOKEHIB OOYHUCHIOIOTHCS SIK IHAEKCH MAaKCHUMaJIbHMX JIOTITIB
(torch.argmax), a cmaHd KOHBEPTYIOThCS Yy (opMar CHUMBOIIB Yepe3 (YHKIIIO
tokens_to char_spans, ska BpaxoBye BigoOpa)keHHS TOKEHIB y CHMBOJIH
(offset_mappings) i 06’eauye OIM3BKI cllaHK 3 BimcTaHHIO A0 Span_merge_distance=1.
CnpapxHi CHaHd OTPUMYIOTHCS 3 IOYATKOBOTO HAOOpY MaHMX, SKIIO MOXIJIHMBO, 1
MOPIBHIOIOTHCS 3 MPOTHO3aMHM Juisi obumcneHHss Fl-score 3a momomororo
compute_span_f1, mo 6a3yerscs Ha KpuTepii mepekpurts. [Iporpec BimoOpakaeTbes
gepes tqdm i3 moToYHMMH 3HAYCHHSIMH BTPATH Ta MBUIKOCTI HABYaHHS.

Ominka Mojeni BHUKOHYETbcs B pexuMmi model.eval() 13 BigkiIrodeHHIM
oOumucnennast rpamieHTiB (torch.no grad()), MmO €KOHOMUTH OOUYMCITIOBANIbHI PECYPCH.
[Ipomec aHanOTiYHWI TpPEeHYBaHHIO: OOUYUCIIOIOTHCS JIOTITH, BTpaTa 3a JOTIOMOTOIO
WeightedFocalLoss, i mporao3yroTscsi cnanu depes tokens to char spans. CrpaBxHi
CIIaHU 3 BaAAIIHHOTO HAOOPY MOPIBHIOIOTHCS 3 MPOTHO3aMU, 1 00UUCITIOIOTHCSI METPUKHU
precision, recall Ta F1 uepe3 compute span_fl, sikuii 6a3yeThcsi Ha KpUTEPii MEPEKPUTTS

cnaniB. CepelHl 3HAYEHHS LUX METPUK PO3PAXOBYIOThCSA ISl BClET BaiigaliiHOi

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 58
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

BUOIPKH, 110 JO3BOJISIE 00’ €EKTUBHO OLIIHUTH MPOAYKTUBHICTb.

MexaHi3M paHHBOI 3yIIUHKH BIACTEKYE MOKpaleHHs cepennboro F1 Ha Bamiganii.
Axmo F1 3poctae, 306epiraerbes korist ctany mojeni (best model state), a TiuUIbHUK
TepniHHa (patience=3) CKUAa€ThCA. SKIO MOKpAIIEeHHS BIICYTHE MPOTATOM TPbOX €I0X,
TPEHYBAaHHs TMPUIMHAETHCA, IO 3arnodirae NEepeHaBYAHHIO Ta €KOHOMHUTH PECYPCH.
Hanpukinii moBepTaeTbest MOJEIb 13 HAWKpaIuM CTaHOM a00, Y KpallHbOMY BUIAAKY, 13
OCTaHHBOT'O KPOKY, SIKIL[O MOKpAIIEHHS HE 0YJIO.

[IporHo3yBaHHs cnaHiB BUKOHYEThCS uepe3 ¢yHkuito predict spans y pexumi
model.eval() 13 BiakTtoueHHsM rpajiieHTiB. CTBOproeThest okpemuii InferenceDataset nis
TECTYBaHHS, JIe TEKCTH TOKEHI30BaH1 3 MOBEpHEHHAM offset mapping 115 BimoOpaskeHHS
TOKeHIiB y cumBosin. [latamoader i3 Oinbinum batch_size=8 (y 4 pasu Ounblie, HK IS
TPEHYBaHHS) TPUCKOPIOE 00UKCIEHHS. JIOriTH MPOrHO3YIOThCS, a ClIaHU KOHBEPTYIOThCS
y cuMmBoau dyepe3 tokens to char spans i3 o00’enHaHHAM OJM3BKHUX CIAHIB 3a
span_merge_distance=1. Pe3ynbTaTn 30€piratoThCs y CIHUCOK, KK TIOTIM May€eThCs 10

ineHTudikaTopiB TecTOBUX 3pas3kiB (auB. JlomaTok b).
BucnoBku 10 po3aiay 3

VY pesynbTaTi AETANbHOTO aHami3y peati3aiii MpoleciB MIATOTOBKU JaHHUX 1
HaBUYaHHS MOJeJIeH NI Kiacudikallii TeXHIK MaHIMYJIAIIl 1 JeTeKIlii CIaHIB y TeKCTaxX
BCTAHOBJICHO, 1110 OOUBA €Tall BUKOHAHO 3 YPaxXyBaHHIM CKJIAJIHOI MYJIbTHIICHOI0OBOT
npupoau 3amadi. OKpeMO MIAKPECICHO aJanTallilo METOIIB JI0 YHIKaJbHHUX
ocoOimMBOCTEl 6araTOMOBHOTO KOHTEKCTY, 30KpeMa YKpaiHChKoi 1 pociiicbkoi MoB. I1if
Yac MiATOTOBKH JaHUX 3a0€3MeYeHO PETEIbHE OUUIIICHHS TEKCTOBUX 3pa3KiB BiJl IITyMiB,
a TaKoX TXHIO HOpMAaJli3aIlifo, IO CHPHSE MiABUIICHHIO SKOCTI BXITHUX JaHUX IS
MOJAJIBIIIOTO aHami3y. AHOTAIliA TEKCTIB 13 PO3KIaJaHHSIM MITOK Ha OiHapHI 3HAYCHHS
JUTSL KOKHOT TEXHIKU YH CIIaHy, Pa3oM 31 cTpaTu(diKOBaHUM PO30OUTTSAM HA TPEHYBAJIbHY
1 Banijaniiiny BUOIPKH, J03BOJISIE 30€pPEerTH PENpe3eHTATUBHICTh PO3MOJLTY KIIACiB,
0COOJIMBO BpPaxOBYHOYHM MOXJIMBUH AUCOATAHC MK TO3WTUBHUMH 1 HETaTHUBHUMU

npukiIagaMu. AHaji3 po3MOALTY KJaciB, OOYMCICHHS CTaTHUCTUKH JTOBXKUHU TEKCTIB 1

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 59
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

BHU3HAYEHHS Bar KJIAaciB CTBOPIOIOTH MILHY OCHOBY JJIsl afjanTallii MoJieJeH 10 PiIKICHUX
MaHIMYJSITUBHUX TEXHIK 1 CHaHIB, IO CYTTEBO MIJBUINYE iXHIO 3[AaTHICTh 10 TOYHOIO
BUSIBJICHHS TaKWX BUMAJKiB. TokeHI3allis 3 YHi(IKalll€lo MIOBXKHWHHU, OIIIOHATbHA
ayrMeHTallsd JaHUX J0JAal0Th CTIMKOCT1 MOJIEISIM JI0 Bapiallid y TEKCTax, 3a0e3Mneuyrodu
iXHIO THYYKICTb y PI3HUX CLEHapIsiX.

VY mpoueci HaBYaHHS MOJIEJEH 3aCTOCOBYIOTHCS Cy4YacHI METOAM MAIIMHHOIO
HaBYaHHS, TaKi SK HAKOMHMYEHHS TPAII€HTIB, IO JO3BOJISE €()EKTHBHO MpPAIIOBATH 3
00OMEKEHUMHU 00UYMCITIOBAIbHUMU PECYpCaMu, PO3NOUISIOUN OOYUCIICHHS IT'PaIIEHTIB Ha
KUTbKa KpOKiB 1 onTuMizytoun BukopuctanHs GPU. [InanyBaHHsS MIBUJIKOCTI HaBYaHHS
3a JIOMOMOTOI0 JHIMHOTO YW KOCHHYCHOTO PO3KJIaNy 3 €TaloM pO3irpiBy CHpuse
cTabutizallli mpolecy Ha TMOYaTKOBHUX e€Tamax, TOJl SK MEXaHI3M paHHbOI 3YIMUHKH,
3aCHOBaHHWI Ha MOHITOPWUHTY MeTpuku F1, 3amoOirae mepeHaBYaHHIO 1 3a0€3MEUyOTh
CBOE€YACHE 3aBEPIICHHS TPEHYBaHHS MPU JOCATHEHHI ONTHMAJbHOI MPOJYKTHUBHOCTI.
BukopucranHs KacTOMHUX (YHKI[IM BTpaT 13 HaJIAalITOBAHUMHU Baram [JIsl KJIaciB
103BoJIsI€ €(heKTUBHO KOMIIEHCYBATH IUcOaIaHCc MiX Ki1acaMu, (POKYCYIOUHCh Ha BAXKKUX
U1 kiacudikarii npukiagax, mo € ocoOJMBO BaXXITMBUM JUIS 3ajlad CETMEHTAIlil Ta
JETEeKIIii criaHiB. AJJanTUBHI MOPOTH, OOYUCIICH] ISl KOXKHOT TEXHIKH YU CITaHy, a TAaKOXK
METPHUKH, 3aCHOBaH1 Ha KPUTEPil NEPEKPUTTSI CIIaHIB, 3a0€3MeUy0Th THYYKICTh Y OIIHITI
PE3YIBTATIB 1 IXHBOT BIIMOBITHOCTI peaIbHUM yMOBaM

3aramoM, 3a3HauyeHI IIJIXOJW CTBOPIOIOTH HAMIMHY OCHOBY IS NOOYIOBHU
BUCOKOSIKICHUX MOJIeeH, 34aTHUX 10 €(EKTUBHOTO BHUSBICHHS MAaHIYJIATHUBHOIO
BMICTYy B TekcTaX. [IpoTe 3a3HayaeThCs, 10 MOTEHIIAT ISl MOKPALEHHS 3aJIUIIA€ThCS:
PO3IIMPEHHS METOIB ayrMEHTAIlil TaHUX, TAKUX K CHHOHIMI3allig U apadpa3yBaHHs,
MOXE ITIBUITUTH CTIHKICTh MOJEICH 0 PI3HOMAHITHHUX JIIHTBICTUYHUX KOHCTPYKITIH.
OnTumizariss rinepmapaMeTpiB MoKe OyTH KOPHCHOIO ISl TIOJAJBIIOTO TiABUIICHHS
TOYHOCTI. TakuM YHHOM pe3yabTaTH POOOTH AEMOHCTPYIOTh 3HAYHHM MpOrpec y
BHUPIIICHH]I TIOCTABJICHUX 3aBJaHb, BOJHOYAC BIAKPHUBAIOYM MOXJIMBOCTI JJIs

MOAANBIIIOr0 PO3BUTKY Ta aJlanTallii 10 OUIbII CKIIAJIHUX CLIEHAPIIB.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 60
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

4 OIIHKA i TECTYBAHHS PO3POBJIIOBAHOTI O PINIEHHA

EdexkTuBHICTh Oy1b-KO1 CHCTEMH aHaJI3y TEKCTY, 30KpEMa B 3a/1a4ax BUSBICHHS
MaHIMYJISITUBHUX TEXHIK, O€3M0CepPeHbO 3aJeKUTh Bl KOPEKTHOCTI MOOYAOBH
€KCIIEpUMEHTIB, YMOB HaBYaHHs Mojeneil, Habopy AaHUX 1 MOBHOTI MPOLEAYpH iX
tecTyBaHHsA. OCKUIBKH po3poOJieHe pilleHHs 1HTerpyeTbes B Tenmerpam-6ot 1 Oyne
B3a€EMOJIATH 3 PEATbHUMH KOPHCTYBadaMH, OCOOJIMBOIO BUMOTOIO € 3a0e3MedeHHs
CTaOUTbHOCTI M y3araJbHIOBAHOCTI Ha JAHUX, SIKI HE BUKOPHCTOBYBAJIMCS Ha eTari
TpPEHYBaHHSI.

VY pamkax 1i€i poOOTH TpolleC HaBUYaHHS, Balijallii Ta TECTYBaHHS MoJjelen
3mificHioBaBcs Ha Kaggle, mo Hajgalo MOXKIMBICTh BHKOPHUCTOBYBATH BHJLUICHE
cepenouiie 3 geoma GPU 1j1s mpUIIBUIIIEHOTO €KCIIEPUMEHTYBAHHS Ta ONTUMI3aIli
napametpiB [21]. Tlnatdopma BucTynwiIa He JHINE SK PEeCype i3 OOYHMCIIOBAILHUMU
MO>KJIMBOCTSIMH, a U SIK 3py4YHE IHTEIPOBAaHE CEPEIOBHILE ISl MPOBEACHHS MAITUHHUX
EKCIIEPUMEHTIB 13 MOJKJIMBICTIO IIBUJKOTO BIITBOPEHHS pe3yibTaTiB. 3aBISKU
MIATPUMII TOMYJApHUX O010J110TEK 1 TOTOBUX IHCTPYMEHTIB Il poOOTH 3 HaOOpaMu
JaHUX CEPEIOBUILE JO3BOJIUJIO 30CEPEAMTHCS caMe€ Ha MOJENIOBaHHI, a HE Ha

HaJalITyBaHHI IHPPACTPYKTYPH.

kaggle

Pucynoxk 4.1 — Jlorotun cepsicy Kaggle

2025 p. FOxuenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 61
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

Y upoMy po3auli pO3MNISIAAIOTBCS MIAXOAW JO OIIHIOBAaHHS SIKOCTI
pO3p0o0JIIOBAHOTO PIIICHHS, OMUCYIOThCS METPUKH, OOpaHi sl PI3HUX THUMIB 3a7a4
(6inapHoi, OaraTokiaacoBoi Kkiacudikamii 1 TOCTIZIOBHOTO MapKyBaHHS), a TaKOX
MOJIA€THCA aHaI3 OTPUMAHKUX PE3YyJIbTaTIB HA KOKHOMY eTarl eKkcriepuMeHTiB. Oco0auBy
yBary TMpPUAUICHO OIlIHII y3arajbHIOBaJbHOI 3JaTHOCTI MOJIENII Ha TECTOBUX
MIAMHOXXKMHAX 1 BHUSBICHHIO OCHOBHMX TIOMHWJIOK Kiacudikamii ¥ BHU3HAYEHHS
MaHINyJIATUBHUX (PparMeHTIB.

OkpeMo pO3rIsSgacTbCsl TECTYBaHHS IHTETPOBAHOI CHUCTEMHM B CEPEIOBHUIII
Tenerpam-00Ta, 10 BKJIIOYAE MEPEBIPKY KOPEKTHOCTI OOpOOKM 3amuTiB, MIBUIKOCTI
BIJIMOBIII ¥ CTIMKOCTI POOOTH MOJENI 3 HECTaHJAAPTHUMH pPEAIbHUMHU JaHUMH,
orpumanuMu 3 Tenerpam-kanaiiB. Take KOMIUIEKCHE OI[IHIOBAHHS JI03BOJISI€ BCTAHOBUTH
NPAKTUYHY MPHUAATHICTH PO3pOOJEHOr0 I1HCTPYMEHTAa Ta BHU3HAYMTH MUISIXH HMOTO

TIOKPAIICHHSI.
4.1 Amnaxi3 it omiHKa pe3yJbTaTiB HaBYaHHA Span-detection momesi

VY mporeci TpeHyBaHHS SPan-Mojieh MPOXOanya KilbKa MOBHOIIIHHUX €TOX 1 Ha
KOXHIN 13 HUX CIOCTepiraBcs CBil xapakTepHuil mporpec. Ha moyaTky mepioi emnoxu
Moaenb (aKTHYHO 1€ «HE pO3yMiiay, SK BUIVISJAIOTh MEXI MaHIMYJIITHBHUX
¢bparmenTiB. Bona poOuna 6arato XuOHUX nepea0aYeHb, 4aCTO MOMKIISIIACS 3 MEXaMHU
span-iB i mIyTajia MOYAaTKU 3 MPOJIOBXKEHHAMH (parMeHTiB. Uepes me moyaTkoBuit F1-
score OyB TOCUTh HU3BKUM, 1110 TUIIOBO JJIs TaKUX 3a7a4. [IpoTsrom mepiioi enoxu micis
necsTkiB batch-ireparriii train-10ss mouas moctymoBo 3mMeHIyBaTHCS : pokambHa QYHKITIS
BTpaT JoloMarajiia MoOeli Oulbllle KOHIIEHTPYBATHCS Ha CKIAgHUX Bumaakax. Jlo
3aBepIIEHHS MEPIIOi eMOXU MOJIETh YKE BIEBHEHIIE BUPI3HsIA KOPOTKI (pparmMeHTH U

Kpallle BiJOKpeMJITIOBaJia iX BiJl 3BHYATHOTO TeKCTy. (puc. 4.2).

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 62
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

Setting up Adaml optimizer with LLRD (Rate: @.9)...
Applying LLRD with rate .9 over 24 layers.

Setting up learning rate scheduler...

Total optimization steps: 3248, Warmup steps: 324
Starting training...

--- Epoch 1/8 ---

Epoch 1 Train Loss: 8.8512 | Train F1: 8.4361

Epoch 1 val Loss: @.0335 | val Precision: ©.4824 | val Recall: @.9511 | val F1: @.525@
New best model saved with F1: &.5258!

Pucynok 4.2 — Pe3ynbTar HaBUaHHS 3a NEPILIO0 €MOXOH0

VY npyriii emoci Bard HIKHIX IMIApiB TpaHcopmepa cTajau pyXaTUCS OUIbLI
BreBHeHO 3aBasku layer-wise learning rate decay (LLRD), amke HWKHI Inapu
Tpanchopmepa 30epirasu 6a30Bi 0araTOMOBHI 3HAHHSA, a BEPXHI TOCTYIIOBO
NPUCTOCOBYBAJIMCA O 3anadi. Ha 1mpoMy erami BOHa Bce Kpalle BiJOKpeMITIOBala
MaHINyJATUBHI (parMeHTH Bl 3BUYAWHOrO TeKcTy. Mexi Span-iB mouanu
BUPIBHIOBATHUCS 3 peaJbHUMU, 3MEHIIIIACS KUIBKICTh 3aiiBuX B-teris, a |-teru mouanu
00’ eTHyBaTHCS y OUTBII MPUPOJIHI HEMIEPEPUBHI OCI1IOBHOCTI. J[0 KIHIISI APYTroi enoXu
TOYHICTh CYTTEBO 3pocia, a recall mepectaB cyTreBo 3MeHITyBaTuCs, 60 MOJENb CTala
MEHIII 00EPEKHOI0 1 HAaBUMJIACS BUSBIISITH JOBII CKIanHi pparmenTu. Banminamiitauit F1
MoYaB IiJHIMATUCSA W CTaB IEPIIUM IMOKa3HUKOM, IO CUTHAII3YBaB IMPO pealbHUM

nporpec i GopMyBaHHAM y MOJICIII MATTEPHIB MAHINYJISTUBHUX CTPYKTYP (puc. 4.3).

--- Epoch 2/8 ---

Epoch 2 Train Loss: 8.8351 | Train F1: 8.5176

Epoch 2 Val Loss: @.8322 | val Precision: 8.5378 | Val Recall: @.9584 | val F1: @.5762
Mew best model saved with F1l: @.5762!

Pucynok 4.3 — Pe3ynbratr HaBUaHHSA 32 TEPIIOI0 €MOXOI0

[Tix yac TpeThOI EMOXHU ONTUMI3AaTOp PyXaBcs Bxke NpiOHMMHU Kpokamu — Scheduler
3MEHINNUB IIBHUIKICTh HABUAHHS, TOMY 3MIHH BiOyBaluCsa M’ SIKO ¥ mocTymoBo. OmgHak
MOJIe/Ib TIoYajia Kpalmie po3yMiTH KOHTEKCT: CTajla MTOMIYaTH TOHKI CTHJIICTHYHI O3HAKH
MaHIMYJATUBHOCTI ¥ KOPEKTHO BIJOKPEMJIIOBATH iX BIJ HEUTpadbHUX pPEUYCHb. Y
BaJT1AaIlli CTaja0 MOMITHUM, 110 MIOMHJIOK CTaj0 MEHIIIE HE JIUIIe HAa TOKEH-PiBHI, a i Ha

piBHI LUIKMX SPan-iB. 3arajioM MOjeJb Pijllie MpoIyckana Mexi abo po3puBaia ix 6e3

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 63
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

notpebu. Hanpukinii enoxu F1 gocsr cBoro Halikpaiioro 3Ha4€HHS, 1 CTajI0 3pO3yMLIo,

10 MOJIEJIb YBIHIILIA B 30HY CTaOUTbHOTO HaBYaHHS (puc. 4.4).

--- Epoch 3/8 ---
Epoch 3 Train Loss: ©.8298 | Train F1: 8.5621
Epoch 3 Wal Loss: @.8342 | Val Precision: 6.6178 | Val Recall: @.9285 | val Fl: @.6258

New best model saved with F1: @.6259!

Pucynok 4.4 — Pe3ynbTar HaBUaHHS 3a TPETHOIO €MOXOI0

YerBepra enoxa Bxke He MPUHECTa 3HaYHOTo npupocty. Baniganiitnuit F1 maiike
HE 3MIHMBCS, a TIOJCKY/IM HABITh TPOXHU KOJUBABCs. 1rain-l0Ss mpomposxkyBaiu MoBUIEHO
crazaty, ajie MOJeJb poouia 1e 6e3 BUANMOro MOKpalleHHs AKOCTi. byio BiquyTHO, 1110
BOHa HAOJMMKAETHCS 0 IJIATO, KOJM MOJajbllle HABYaHHS BXKE HE JABaJl0 MPAKTUYHUX
nokpamieHb. CaMe TyT paHHs 3yIMHKa cTaja [IOKAa30BOK0 — BOHA CIIpallfoBajia IicCis
KUTBKOX ernox 0e3 mokpaineHHs. CaMe Ha IIbOMY €Tarli CIpalfoBaB MEXaHI3M PaHHbOI
3YNUHKU: TPEHYBAHHS 3aBEpIIMJIOCS, a CHUCTEMa IIOBEpHyJlacs [0 I[apaMeTpis,

OTPUMAHUX Y TiH TOYIl, A¢ Bajigamiiauii F1 6yB MakcumanbauM (puc. 4.5).

--- Epoch 4/8 ---
Epoch 4 Train Loss: ©.8268 | Train F1: 8.619@

Epoch 4 val Loss: @.6382 | Val Precision: ©.6595 | Val Recall: @.98@%9 | Val Fl: @.64383
HNew best model saved with Fl: 8.6483!

Pucynok 4.5 — Pe3ynbTaT HaBYaHHS 32 YETBEPTOIO EMOXOI0

[TounHaroum 3 1’SITOT €MTOXW MOJECIH YBIWIIUIA B cTaOUTRHY a3y HaBYaHHS: train-
loss mpogoBkyBaB MOBUIBHO 3MEHIIYBAaTHCS, OJHAK II€ BXKE HE JaBAJO BiIIyTHOTO
MPUPOCTY BaliAAIifHOT AKOCTi. Y MIOCTIH €Moci cTajao MOMITHO, IO MOJIeTh (PaKTUIHO
BIITBOPIOE Ti caMi mTaTepHH, SKi chopMyBaia paHilmie, a HEBEIWKI KOJWBaHHSI
BamiamiHoro F1 mepeOyBamm B Mekax CTaTUCTHYHOI MOXuOKH. ChoMa €rmoxa JIMIIe
MiATBEPIMIA ITF0 TCHICHITII0: CHCTeMa BIICBHEHO MPAIliOBaia Ha ONITHMAIFHOMY PiBHI, HE
JIEMOHCTPYIOYM O3HAK IEpPEHAaBUAHHS, HE TMOKpANlylOYW pe3yiabTaTd. BockMa emoxa
OCTAaTOYHO 3aCB1MUMIIO TIPO T€, IO TOIAJIbIIIe HABYAHHS HE TPUBOIUTH JI0 PEATTbHUX 3MiH
y sIKOCTi mependadeHb. Y CBOIO 4Yepry aKTHUBYBaBCS MEXaHI3M paHHbOI 3YIUHKH,
¢dikcyroun HalKpalluii cTaH MOJielll Ha HonepeHix eramnax (puc. 4.6).

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

--- Epoch 5/8 ---
Epoch 5 Train Loss: 8.8218 | Train F1: 8.6638

Epoch 5 val Loss: @.8472 | val Precision: @.6721 | val Recall:

New best model saved with Fl: @.6543!

--- Epoch 6/8 ---
Epoch & Train Loss: ©.8183 | Train F1: B.6985

Epoch & Val Loss: @.8538 | Val Precision: @.6527 | Val Recall:

Mo F1 improvement (B.6425 ws best 8.6543). Counter: 1/3

--- Epoch 7/8 ---
Epoch 7 Train Loss: 8.8161 | Train F1: 8.7229

Epoch 7 val Loss: @.8566 | Val Precision: @.6525 | val Recall:

Mo F1 improvement (B.6438 wvs best @.6543). Counter: 2/3

--- Epoch &/8 ---
Epoch & Train Loss: 8.8142 | Train F1: 8.7388

Epoch 8 Val Loss: @.868@ | Val Precision: ©8.7827 | Val Recall:

New best model saved with Fl: @.6643!
Loading best model state with Fl: @.6643
Saving the fine-tuned model...

8.8852 | val Fi:

@.3269 | Val F1:

@.2904 | val Fi:

8.3673 | val F1:

Pucynok 4.6 — Pe3ynbratr HaBUaHHA 32 YETBEPTOIO €MOXOI0

@.6542

@.6425

@.6438

8.6642

64

[Ticns 3aBepiieHHsT TpeHYBaHHS OyJI0 TPOBEIEHO MOPIBHAHHS IOYaTKOBOTO

Ha6opy HaHUX, Ha AKOMY HaB4allaCid MOJACJIb, 3 HAaTACCTOM, C(l)OpMOBaHI/IM TiCIIs

HaBuaHHs. Pe3ynbTaTH MpencTaBieHi Y BUIIISAII MTOKA3HUKIB METPUK SKOCTI — Precision,

recall, F1 (puc 4.7).

Precision: B8.535581844153608277
Recall: B.60893977629243567
Fl: D.560299739424856231

Process finished with exit code B

Pucynok 4.7 — Pe3ynbpTaT HaB4aHHS 32 YETBEPTOIO EMOXOI0

[Toka3HWKHM CBIAYATH PO MOMIPHY TOYHICTH MOJIEITI B BUSIBJICHHI MaHITY IS THBHUX

¢dparmenTiB, 3 akimeHToM Ha recall, 3maTHICTH He MPOMyCKAaTH peeBaHTHI CHaHH, IO

CBITYHTH PO MPIOPUTET MIHIMIZAIIT MPOITYCKY MaHIMYJISI[iH HABITh IIIHOO MOSIBU MIEBHOT

KUTBKOCTI XMOHUX CHpalbOBYBaHb. Taka TMOBEAIHKA 3HAYHOI MIPOK 3YMOBJICHA

BUKOPUCTaHHSM (okanbHOT (PYHKIII BTpar, sika 3MyllyBaja allfOPUTM arpecUBHO

pearyBaTu Ha HailMEHIII1 03HAKU LUIBOBOTO KJacy. JleTanbHuii po3ris po30KHOCTEN Y

Mekax Span-iB BUSIBUB TEHJCHIIIIO IO TaK 3BAHOTO «PO3MHUTTS KOPJOHIBY, KOJU MOJCIb

2025 p.

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 65
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

KOPEKTHO 1IeHTU(]IKYE came HasiBHICTh MaHIIYJISL1i, aje He 11eabHO (PIKCYE i MOYaTOK
1 KiHeIlb, TOMWJIKOBO BKJIIOYAIOUM JI0 BUJUIEHOTO (PparMeHTa CyCiIHI HEUTpasibH1
TOKEHU — PO3AUIOBI 3HAaKW YU CIOJIYYHUKH. 3a pe3yjbTaTaMu TMOPIBHSHHS MOKHO
CTBEP/DKYBaTH, IO MOJENIb YCIIIIHO 3acBOijla CTPYKTYpPY MAaHIMyJISTHBHUX
BHCJIOBJIFOBaHb, JOCATIa CBOTO ONTUMYMY B MeXaX HasBHOI apXiTeKTypu W IaHHX.
BusiBneni po30ibKHOCTI MDK (aillaMu MIAKPECTIOI0Th HEOOXITHICTh MOJANbIIOrO
PO3IIMPEHHS HaBYAJIbHOT BUOIPKH 1 BIIPOBAXKEHHS €TaIly NocT-00poOku A pitbTparii
XHOHUX CIPAIlbOBYBaHb.

VY pesyibTaTi TpEHYBaHHS MO €MoXaM IPOJEMOHCTPYBAJIO MOCTYIOBUH PYX Bij
XaO0THYHHUX 1 HAATO OO0epexHUX TnepeadadyeHb 0 BIEBHEHOTO, 30alaHCOBAHOTO
BU3HAYEHHS SPaN-iB 13 YITKUMHU MEKaMH, 1110 BIIMOBIIAI0Th peabHUM MaHIMyJISITHBHUM
dbparmentam. Baminamiiinuii F1 3poctaB yrnpogoBx KIIOUOBUX €TaIliB HABYAHHS U JJOCST
MaKCHUMAaJIbHOTO 3HA4Y€HHS B TOYIll, /€ MOJIeTh CTaOUIRHO BiITBOPIOBAJIA CTPYKTYPY
MaHIMMyJATUBHUX (PparMeHTIB Ha BaJiJallifHUX JaHUX. BogHodac pe3yiabTaTu BUSBUIN
Il meBHI OOMEXEHHs: MICIs TPEThOi 1 YETBEPTOI €MoX MOJENb MPAaKTUYHO BUHIIIA Ha
IJIaTO, a MOJAJIbIIe 3MEHIIeHHs train-l0ss He cnpusUI0 MOJIMIIEHHIO y3arajbHIOKYOT
3maTHOCTI. L{e cBiAUMTh PO Yy TIMUBICTH MOJIEII IO PO3MIpY i PI3HOMAaHITHOCTI 1aTaceTy.
[Tonpu 3arajgoM BHCOKI IOKa3HUKH, CHUCTEMa IMEPIOAUYHO ILIyTalla MEX1 JOBIHUX
¢bparmeHTiB a00 HEKOPEKTHO MO3Hayana CIabOBHPaKEH1 CTHIIICTHYHI MaHIIMYJISIii.
Cralurizaliist METpHUK y MI3HIX €M0Xax 1 aKTHBAIlSl paHHBOI 3yTUHKH CBIiTYaTh MPO TE, 1110
MOJIEITb IOCATIIa ONTUMYMY B paMKaxX AOCTymHUX AaHuX. CIiJl 3a3HAUYMTH, 110 TIOTEHITIal
JUIS TIOKPAILICHHS 3aJIMIIAEThCS — HacaMIlepe]l dyepe3 HEOOXIIHICTh MUPIIOi 1 OLIhII

30amaHCOBaHOT HABYAIbHO1 BUOIPKH.
4.2 AHaii3 i oninka pe3yJbTaTiB HaBuaHHs class-detection moameni

VY mepmriii enoci MoIeNb MPOAEMOHCTPYBaIa TUTIOB1 CTAPTOB1 XapaKTEPUCTUKHU IS
0araTokJIacoBOro MyJbTUJIECHOIOBOTO 3aBJaHHS 3 HEPIBHOMIPHUM PO3IOJIJIOM KIIACIB.
3nadenHs macro-F1 cranosuio 0.3103. HaliBuiii pe3ynbTaTu Oyiau OTpUMaH1 JJis KJIaciB

13 Y1ITKO BUPAKCHUMU JIEKCUKO-CEMAHTUYHUMU IHIUKATOpaMH, 30KpeMa

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 66
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

loaded_language (0.71) Ta glittering_generalities (0.41). Po3paxoBaHi onTuManbHi
MOPOrM BKa3ajlW Ha ICTOTHY PI3HUIIO Yy BIEBHEHOCTI MOJENl MK Kiacamu. Jleski
kareropii (bandwagon, whataboutism) nemoncTpyBamu Huspkuii F1 gepe3 ciabky
BUPAXKEHICTh (popMaNbHUX O3HAK y AaHuX. [1iq KiHelb €MoXu CTajuo MOMITHO 3MIIICHHS
ontuMmaneHux nopori (optimal thresholds) nmemoncTpyrounm crnpoOy TouHire

B1JIOKPEMJTIOBATH CIIPaB/l PEJICBAHTHI CUTHAIM MaHIMYJALINA Bl mymy (puc. 4.7).

Epoch 1/18@

Loading widget...

Training loss: 1.@161

Loading widget...

Validation Macro F1: ©.3103

Updated optimal thresholds based on best F1: {'straw man': 9.5600000000080604, 'appeal to_fear':
©.4700000000000003, 'fud': ©.5700020200000004, 'bandwagon’: ©.43000000208000027, 'whataboutism®:
©.5100000080000003, ‘loaded_language': 0.5208080000000004, 'glittering generalities': ©.65000000
eaeeeses, ‘euphoria’: 8.44p0000800008083, ‘cherry_picking': @.5760000080808004, 'cliche’: 8.5068
800000020003}

straw_man: @.1667

appeal_to_fear: ©.1720

fud: @.3610

bandwagon: @.13e4

whataboutism: ©.1347

loaded_language: @.7188

glittering_generalities: 8.4145

euphoria: 8.2927

cherry_picking: ©.4832

cliche: @.3168

Saved best modell

Pucynok 4.7 — Pe3ynbratr HaB4aHHS 32 TEPILIOIO €MTOXOI0

VY npyriit enoci macro-F1 migsumnusces go 0.3924. [TokpaliieHHs criocTepiraaocs
nepeAyciM y Kiacax 3 IIOMIPHO CTaOlIbHUMHM KOHTEKCTHHMH TIaTepHAMH, SIK-OT
glittering_generalities (0.64) i cherry_picking (0.44). Pe3ynbTaTt BKa3yiOTh Ha IOYaTOK
dbopMyBaHHS Y3rO/PKEHUX O3HAK Ha pPiBHI JIOKAJIbHUX KOHTEKCTIB 1 PUTOPUYHHX
cTpyktyp. 3HadenHs s loaded language 3anmmanock cTaGiTbHO BHCOKHM, IO
MIATBEPKYE HASBHICTh HAAIMHUX KIIOYOBMX MapkepiB y kopmyci. [likaBo, 1m0
IMOBEAIHKA MOJEIII CTaja OUIBII ITOCIIIOBHOIO: BOHA MEHIIIE IMOKJIaaaaacs Ha BUIIAIKOBI
30iru Ta 4acTille BiATBOPIOBaja Ti caMi MATEPHU Y CXOKUX KOHTEKCTaX. Y 1€l MOMEHT
CTaJIO OYEBHJIHO, ITI0O BOHA BUUTHCS HE IPOCTO PearyBaTH Ha KIIFOYOBI CIIOBA, a MOYHHAE
dopmyBatn OUThII ~ y3arajdbHEHE ySBICHHS TPO JIOTIYHI W PUTOPUYHI

KOHCTpYKIIii (puc. 4.8).

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 67
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

Epoch 2/18
Loading widget...

Training loss: ©.8743
Loading widget...
Validation Macro F1: @.3924
straw_man: @.2683
appeal_to_fear: 8.2578

fud: @.4541

bandwagon: @.1743
whataboutism: @.2297
loaded_language: ©.7121
glittering_generalities: 8.6426
euphoria: @.4262
cherry_picking: ©.437@
cliche: @.323@

Saved best model!

Pucynok 4.8 — Pe3ynbrar HaB4aHHA 3a APYTOIO €MOXO0I0

Tpers enoxa CynpoBOJKyBajach HEBEIMKHUM 3HIKEHHSIM Macro-F1 mo 0.3741.
HaitmomitHimmm BigxuiaeHHsM ctaB kiac cliche, ne F1 BmaB 1o Hys, 1110 CBiqYHUTH PO
HECTayy pO3PI3HIOBAIBHUX O3HaK a00 HEJOCTAaTHIO KIUIBKICTh PENpPEe3eHTaTHBHUX
npukiIaaiB. Mojenb modana OuIbIlne 3BakKaTH Ha CKJIAIHIII 3aKOHOMIPHOCTI, aje IIe He
MorJia iX cTabiTbHO 3acTOCOBYBaTH. Takosk ciia 3a3HauntH, mo kiaacu fud i euphoria
30eperiu cTabiIbHI MOKa3HUKHU. JluHaMmika BajigallifHUX METPUK y IIA eroci MOXe
BiZIMOB1IaTH (a3l JIOKAITBHOT HECTAOLITLHOCTI ITiJT Yac y3arajabHEHHS HOBUX CTPYKTYPHUX

o3Hak (puc. 4.9).

Epoch 3/18

Loading widget...

Training loss: @.8186
Loading widget...
Validation Macro F1: 8.3741
straw_man: @.2748
appeal_to_fear: ©.3487

fud: @.4615

bandwagon: @.2222
whataboutism: @.2675
loaded_language: ©.6687
glittering_generalities: ©.6182
euphoria: ©.5191
cherry_picking: @.36%8
cliche: ©.0008

No improvement for 1 epochs.

Pucynok 4.9 — Pe3ynbratr HaBUYaHHS 32 YETBEPTOIO €TIOXOI0

VY yeTrBepTiii enoci 3HaueHHs Macro-F1 migsumunocs 10 0.4368 — Ha TOM MOMEHT
ne OyB HallkpamMid MOKA3HUK. 3HAYHO MOKPAUIWINCh pe3yldbTaTH A
glittering_generalities (0.67), loaded_language (0.75) i cherry_picking (0.49). Kmnacu 3

MEHIII SBHUMH CTHJIICTHIHHMH iHauKaTopamu (Whataboutism, bandwagon) 3anumummcst

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 68
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

Ha HU3bKOMY PiBHI, IO KOPENIIOE 3 iX CIa0KO CTPYKTYpPOBAHHUMH NAaTEpPHAMH y JAaHHX.
3aranoMm y 4eTBEpTId €roci MO)KHA MPOCIIAKYBaTHU HOBUM pPiBEHb 30aJaHCOBAHOCTI —
MOJIeNIb CYTTEBO 3HHM3MJIA CXWIBHICTh JO JAOMIHYBAaHHS OKPEMHUX KJIAcCiB 1 JEMOHCTPYE
3HaYHO 30aJlaHCOBaHIIy MOBEIIHKY, MIATPUMYIOUM MOPIBHSIHHY MPOAYKTHBHICTH IO

BChOMY Habopy kiacis (puc 4.10).

Epoch 4/18
Loading widget...
Training loss: &.7532
Loading widget...
Validation Macro F1: @.4368
straw_man: ©.2887
appeal_to_fear: ©.4156
fud: @.4739
bandwagon: ©.1258
whataboutism: @.2317
loaded_language: @.7589
glittering_generalities: 8.6725
euphoria: 8.53@3
cherry_picking: ©.4967
cliche: 8.373@
Saved best model!

Pucynok 4.10 — Pe3ynbTaT HaBYaHHS 32 YETBEPTOIO €MOXOI0

Y msarii emoci momens nocsaria 0.4428 macro-F1. HaiGinemuii mpupict
cnocrepiraBcs y kmaci fud (0.53). 3mauno sminuiau moswumii glittering_generalities
(0.6492) i loaded_language (0.7406), siki cTabiIbHO YTPUMYIOTH JIIAEPCTBO CEPE yCix
kinaciB. [li MOKa3HWKM MiATBEPKYIOTh BHCOKY YYTIUBICTH MOJENI 10 EMOIIHHO
3a0apBiIeHOT a00 11€0JOTTYHO HAaBaHTAXXEHOI JICKCUKH. [lokpalieHHs B 1HIIMX KJacax
OyJ10 MOMIpHUM, 3arajibHa MOBE/IIHKA MOJIEIII CTaia OLIbII CTaOUIHHOTO, IO MIATBEPIKYE

mocTyrnoBe (GopMyBaHHs CTIHKHX O3HAK Ha PiBHI TOKEHIB 1 ¢pa3 (puc 4.11).

Epoch 5/18
Loading widget...

Training loss: @.6944
Loading widget...
Validation Macro Fl: ©.4428
straw_man: ©.2800
appeal_to_fear: 8.3164

fud: @.5315

bandwagon: @.2677
whataboutism: @.2946
loaded_language: ©.7486
glittering generalities: 6.6492
euphoria: ©.4771

cherry picking: @.476@
cliche: ©.4813

Saved best model!

Pucynok 4.11 — Pe3ynbTaT HaBYaHHS 3a M'SITOT €0XOI0

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs

69

AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

[IocTa 1 cbOMa eN0Xu XapaKTEePU3YIOThCsSI HE3HAUHOIO Bapialllero METPUKHU MACro-

F1 y mexax 0.433-0.434. 3umxkeHHs pe3y/bTartiB y kinacax cliche, bandwagon ceiguuth

IpO YYTIUBICTb MOJENI 10 PIAKICHUX KOHCTPYKIIM 1 MOMKIIMBY 3aJ€XKHICTh BiJ

nucOanancy kimaciB. BomHowac kimacu tuny loaded language 30epernm Bucoki ¥

CTaOUIbHI TIOKa3HUKH, 110 MATBEPKYE iX CTPYKTYpPHY BiTOKpeMIleHICTh (puc 4.12).

Epoch 6/1@
Loading widget...

Training loss: ©.6437

Loading widget...
Validation Macro F1:
straw_man: ©.3000

appeal_to_fear: 0.3179

fud: ©.4663
bandwagon: ©.2370
whataboutism:

loaded_language: ©.7324
glittering_generalities: ©.6421

9.3333

euphoria: ©.5179

cherry_picking: 0.4724

cliche:

No improvement for 1 epochs.

0.3143

0.4334

Epoch 7/10
Loading widget...

Training loss: ©.6019

Loading widget...
straw_man: ©.2637
fud: ©.4903
bandwagon: ©.2131
whataboutism:

euphoria: ©.5327

cliche: ©.3288

Validation Macro F1:

0.2804
loaded_language: ©.7507
glittering_generalities: 0.6537

e.4341

appeal_to_fear: 0.3696

cherry_picking: 0.4579

No improvement for 2 epochs.

Pucynok 4.12 — Pe3ynpTaT HaBYaHHS 3a IIOCTOIO 1 CbOMOIO €MT0OXaMHU

VY BochMili emoci OyB JocArHyTUH Havikpanuii pesynbratr — 0.4469 macro-F1.

[Mokpamenns BinOynocs y kiacax euphoria (0.5385), fud i cliche. 3naucHHs

PO3MOAUIMIIMCH OUTBII PIBHOMIPHO, IO BKa3y€ Ha MOKpAIEeHHS 3JaTHOCTI Mojei

BIJIOKpEMJTFOBATH CEMAHTUYHO OJIM3bKI PUTOPUYHI TexHIkM. Ha mpomy erami mMopaenb

JOCSTIIa ONTUMAIBHOTO OaJlaHCy MDK —y3araJlbHCHHSM

TpeHyBaJIbHUX naHuXx (puc 4.13).

Epoch 8/18
Loading widget. ..
Training loss: @.5746
Loading widget...
Validation Macro Fl: @.4459
straw_man: 8.2716
appeal_to_fear: 8.3841
fud: ©.4966
bandwagon: @.2783
whataboutism: @.2791
loaded_language: ©.7455
glittering_generalities: 8.6476
euphoria: 8.5385
cherry_picking: ©.4721
cliche: @.3636
Saved best model!

1 TPUCTOCYBaHHSAM 1O

Pucynok 4.13 — Pe3ynbTaT HaB4aHHS 32 MIOCTOIO 1 CBOMOIO €MTOXaMH

2025 p.

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 70
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

VY nep’ariii Ta AecATi emocax MNOKpallleHHs He crocrepirainocs: Mmacro-F1
3ayIMIlIaBcs B Mexax craTucTudHoi noxudOku (0.439-0.442). 3HMKEHHS MO3UTUBHOL
JTUHAMIKH TIpU 30epeKeHH] MaliHH TPEHYBAIbHUX BTPAT MOKE CBIIYUTH IPO MOYATOK
nepeHaBuanHs. HaiOinein crabinbHuM KimacoMm 3anuinaBcs loaded language, Tomi sk

bandwagon i1 whataboutism 30epiraiau HE3bKi 3HAYCHHS 4Yepe3 cla0Ko (opMai30BaHy

CTPYKTYDY.

Epoch 9/18 Epoch 16/1e
Loading widget... Loading widget...

Training loss: ©.5549 Training loss: ©.5463
Loading widget... Loading widget...
Validation Macro F1: 9.4423 Validation Macro F1: ©.439@
straw_man: ©.2532 straw_man: @.2564

appeal _to_fear: 8.3797 appeal to fear: ©.3467

fud: 0.4845 fud: ©.4898

bandwagon: ©.2667 bandwagon: @.2581
whataboutism: ©.2887 whataboutism: ©.2917
loaded_language: ©.7415 loaded_language: ©.7446
glittering_generalities: ©.6351 glittering_generalities: @.6377
euphoria: ©.5225 euphoria: ©.5249

cherry picking: ©.4774 cherry_picking: ©.4655
cliche: @.3740 cliche: ©.3745

No improvement for 1 epochs. No improvement for 2 epochs.

Pucynok 4.14 — Pe3ynbpTaT HaBUaHHS 3a JIEB’ ITOIO 1 IECATOIO €TIOXaMH

I'padix «Class-wise F1 Scores» e wHaiOuIbn iHGOPMATHUBHUM JJIS OLIHKH
3IaTHOCTI MOAeIN A0 Au(EpeHIrialii, OCKUIbKH BiH LTIOCTPY€E, HACKLTBKA HEPIBHOMIPHO
BiIOYyBA€ThCS TPOTPEC HABYAHHS Ta Y3araJlbHEHHS O3HAaK 7S KOXKHOI OKpeMoi
puTopu4HOi TexHiKU. Po3risiHeMo aetanpHime nuHaMmiky F1l-mMeTpuku B po3pi3i Kiacis,
o0 imeHTudikyBaTH HAMOUIBII CTIMKI ¥ HAWOLIBII MPOOIEMHI JIJIT MOJEN KaTeropii

MaHIinmyJsii (puc. 4.16).

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 71
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

Class-wise F1 Scores

0.6 4

0.5

0.4 /// .
P ‘ P ——

F1 Score

—— straw_man
appeal_to_fear

fud

bandwagon
whataboutism
loaded_language
glittering_generalities
euphoria
cherry_picking

—— cliche

0.2 1

0.1

0.0

=
o
s
o
@

Epoch

Pucynok 4.14 — Pesynwrytounii rpadix Class-wise F1 Scores

OuyeBUIHUMH JifiepaMy 3a CTAOUIBHICTIO 1 BenuunHOor F1-Score e kiacu
«loaded_language» i «glittering_generalities», siki mocTiifHO yTprMYyrOTH 3HaYeHHs F1
Bumie 0.65. 3HadeHHS BKa3ylOTh Ha HAsSBHICTh y IMX KAaTeropisx YiTKHUX, J00pe
dbopmanizoBaHUX JEKCHKO-CEMAaHTHYHUX MapKepiB, sSKi MOJEb JIeTKo ineHTudikye. Ha
IpoTHBAary mpoMy kiacu, «bandwagon», «whataboutism» i «straw_man», mpoTsrom
yChOTO TPEHYBaHHS 3aJIMINAIOTHCS Y HUXKHIM YacTUHI Tpadika, JeaBe 10Jal0ul 03HAYKY
0.3. Ix HM3BKA MPOJYKTHUBHICTH 3yMOBJIEHA BHCOKOI KOHTEKCTYAIbHOIO 3aJIEXKHICTIO,
CKIIAAHICTIO popMarizallii maTepHiB i MEHIIOK KUTHKICTIO PENPE3eHTaTUBHIUX MPHUKIIA/IIB
y HaBYaJbHOMY JaTaceTi, IO He Ja€ Mojell 3MOTH CchOpMyBaTH CTIMKI O3HAKH.
dnykTyarttii croctepiraroThest y kinaci «cliche», skuii nepexuBae pizke MaaiHHS 0 HYJIS
Ha TPETIH emoci, ajie MBUIKO BITHOBIIOETHCSA. L5 3MiHa CBIIYUTH TPO THMYACOBY BTPATY
a00 mepenpu3HaUYeHHS Bar Mij] 4yac a3y y3araabHEHHS, ajie YCIITHE 1X BITHOBICHHS B
HACTymHUX iTepamisax. JluHamika 3a KiIacaMd MATBEP/KYE, IO HAHOLIBIIAM
cTpuMyrouuM (aktopoMm s 3pocTaHHs 3araibHoro Macro F1 e gucbamanc 1

HEOJIHOPIJHICTH KJIaciB, a HEe PyHAaAMEHTaIbHA HE3MATHICTh MOJEII 1O HAaBUYaHHS.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 72
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

[TincymkoBuii Halikpamuii pedynbrar Macro-F1 — 0.4469 na 8 enoci. Mogenb
JIEMOHCTPY€E BIIEBHEHE pO3IMI3HABAHHS KJACIB 13 UYITKUMH JIEKCUKO-CEMaHTUYHUMHU
naTepHaMH, ajie OOMEXEHY MPOIYKTUBHICTb JJISl TE€XHIK 31 CllabKO BHpaxXe€HUMHU abo
KOHTEKCTHO 3aJ&KHUMH O3HakaMu. OCHOBHUMHU CTPUMYIOUMMHM YUHHUKAMHU
BUCTYNAIOTh JUCOaNaHC KJIAaciB 1 HEOAHOPIAHICTh (HOPMaIbHUX 1HIUKATOPIB Yy PSIAl

KaTeropiu.
4.3 Amnaiui3z po6otu moaeneii interposanux y Tejerpam

ApxiTeKTypa CHUCTEMU 0a3yeTbCcsi Ha TMOCIIJOBHOMY BHUKOPHUCTAaHHI JIBOX
HelpoMmepekeBUxX Mojened. Jlima 3a0e3nedyeHHsT BUCOKOI IMIBUAKOAIL 1 omTuMmizallii
BUKOPUCTaHHS pecypciB OOYHUCICHHS 3a MOKJIMBOCTI TMEPEHOCSAThCA Ha TpadiuyHun
nporiecop Compute Unified Device Architecture (CUDA) i3 BUKOpHUCTaHHIM PEKUMY
MOJIOBUHHOT TOYHOCTI, a TIPH 1HIIIai3alii CUCTEMU BUKOHYEThCS OOOB’S3KOBHM eTam
NOTEepPEHBOT MIITOTOBKU MOJIENIEH Il YHUKHEHHS 3aTPUMOK II1J] 4ac MEepIInX 3aluTiB
kopuctyBauiB. [Ipu Bukopucranui Nvidia GeForce GTX 1650 4GB notpidHo npubiau3Ho

2 XBUJIMHU JJIS TIEPIIOTO 3aMycKy 0oTa.

manip_bot
L

highlight manipijlative parts and name the techniques ‘<
used. o
Try it right now! 5

Ea >
2°Gal

DN /start q.apAM

Bagwk
fstart
Hi
- I'ma bot that analyzes text for manipulations using
- neural networks.
| Just send me any text or forward a message —T'l
;(. highlight manipulative parts and name the techniques
used.
Try it right now! 4

o

Change language

Pucynok 4.15 — IlouaTtok pobotu 60Ty
[Tporniec 00poOKU MOBIIOMIICHHS PO3MOUYUHAETHCS 3 TOKEH13a1l1i BXITHOTO TEKCTY 1
poboTu Span-Mojeni, sKa BIJINOBiAaE 3a JOKaNi3alil0 MiAO3pUIMX (parMeHTIB
OesnocepeHb0 y pedeHHl. OTpuUMaHi MPOTHO3M MPOXOASATh €Tam aJIrOpPUTMIYHOI

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 73
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

MOCTOOPOOKH, MiJ Yac SIKOrO OKpPEeM1 TOKEHHU TPAHCPOPMYIOThCA y TEKCTOB1 IHTEPBAJIU.
VY cBo1o yepry OJu3bKi 332 pO3TalllyBaHHIM (PparMeHTH aBTOMAaTUYHO 00’ € THYIOTHCS JUIS
MOKpAaIlleHHs] YMTAa0eIbHOCTI pe3ynbraTy. Tpeba B3siTH 10 yBarw, mo Span-detection
MOJIeNb MOoKa3aja Kpalill pe3yabTaT y 3HaXOHKEHH1 MaHINy AN HIXK Kilacudikaliina
MOJIeJIb. 3aMICTh MapajiebHOi 0OpOOKH TEeKCcTy oboma monensiMu Oyjae BIIOyBaTHCS
MOIIYK MAaHIMYJISITUBHUX CIAHIB 1 y BUOAAKY iX HAsIBHOCTI 3/1MCHEHO Kiacu(iKaliio.
BoHna 3niiicHIOETBCSI 3a JOMOMOIOK) CUCTEMHM JIHIMHMX IIapiB, a (PYHKIlS aKTHBAIi
BU3HAYa€ IMOBIPHICTh HABHOCTI OJHIET 3 AECATH MAHIMYISITUBHUX TEXHIK, TOPIBHIOIOYN
OTpUMAaHI1 3HAYEHHS 3 IHAMBIAYaJIbHUMHU MOPOTraMu YYTIMBOCTI IJIsl KOXKHOTO Kiacy.

manip_bot
Q

BIldALIb, d SEJIEHLKAN BUIBILLIKA KdMED 1A 3dI UIUBKIA B UMV

Bagwmk
#MyxW ATOHWA 3eNEHCKOro WKW OUEpegHOE MEXAYHADOAHOE ...

Manipulation analysis:

cnyxwe

AFOHWA 3eN2HCKOrO WK OUepesHOe MEXJyHapogHoe
MOpaxeHne 1 NpocYET?

SeneHCKWA yBonuA nowna e bpuTaHun MNpucraiiko, KoTopeli
KPUTWKOBAN NPE3WASHTA 33 "He340p 0Bkl Capkazm”.

Mo HaLWWM AaHHEIM, 3eneHCKUA TepAeT anbTepHaTUBHEIA KaHan
0BLLEHWA C NOHAOHCKUM MCTEBANLLMEHTOM (MMeHHO BuzHec
cpefoii n BGEHHbIMH}.e l

OCTancA TONLKO KaHan Yepes EpmaKae - Mi5. 37O KaHan
TOMBKO CO cneqypoﬁe.

Ha 40nrocpoyHyH - 370 Be3yCnoBHO NopaxeHWe ANA YKpauHel,
KOTOpas 0TPA3NTCA Ha Kelice 0BLUMPHOR NOALEPXKN «yYKDAWHIKOrD
BONPOCa» 1 BO3MOXHO YBEANYMT 3348PXKN B Nepeade
GUHAHCOEON 1 BOSHHOM NoMoLLyy.

31O ouepejHOe 4OK32aTeNeCTED, UTO SeneHckUi CTAaHOBUTCA Ha
99.9% 3aencim OT EpMaka. @akTyeck 3e - 370 «KyKNas B pyKax
| Epmaka.

; | Kak roBopur ncTosdHnK. EpMaK noayunn peansHyro ryBuHHyo
| EBNacTb, a 3eneHcKWi BONBILLKKW Kamep W 3aronoeki 8 CMIA.

Detected techniques:
+ FUD (Fear, Uncertainty, Doubt)
« Loaded Language

Pucynok 4.16 — Pe3ynbpTaT aHannizy Ha HassBHICTh MaHITYJISITIH

JlolaTkoBO peasnizoBaHO MOCTOOPOOKY PE3yNIbTaTIB, sSIKa HAJA€ IPIOPUTET MIEBHUM
TEXHIKaM y pa3i OJU3bKUX UMOBIPHOCTEH, 00MEXY€E KUTBKICTh BUSBICHUX TEXHIK TPhOMa
HAWOUTBINI peNIeBaHTHUMH U Tepeoadae pe3epBHUN MEXaHi3M JJisi IPUCBOEHHS 6a30BO1
TEXHIKW TP HAIBHOCTI CTaHiB 0e3 uiTkoi kinacudikarii. [arerparis 3 inTepdeiicom 60Ta
3a0e3mnedye MATPUMKY JBOX MOBHUX PEKHMIB 3 aBTOMATUYHUM TIEPEMHUKAHHSM,
30epiraHHsIM OCTaHHBOI'O aHaJI3y JJIsi MOJANbLIOTO JIOCTYNYy O JETAJbHUX OIKCIB
TEXHIK Ta BI3yaJIbHUM BHAUICHHSM MAaHINYJISITUBHUX (PparMeHTIB 3a JIOMOMOTOIO

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 74
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

CHeliaJIbHUX MapKepiB [UIsl Kpalloi I1HTeprnperanii KopucTyBadem. JloryBaHHs
HMOBIpHOCTEH Mil Yac OOpPOOKH CIpHUSE€ MOHITOPUHTY €(EKTUBHOCTI CHCTEMH B
peaqpHOMY 4Yaci W jgomomarae mpH aHaiizi e(peKTUBHOCTI Kiacu@ikaliifHOT MOJei.
[ToTpeba y oMy pillleHH], SIK 3a3HAYaJI0Cs paHille, BUHUKAE YePe3 I0BOJI1 HEBEIMKOTO

HaBYAJILHOT'O HAOOPY JTaHUX.

Probabilities: straw_man: 0.4468, appeal_to_fear: 0.5571, fud: 0.4358, bandwagon: 0.4614, whataboutism: 0.4832, loaded_language: 0.5122, glittering_generalities:
Probabilities: straw_man: 0.4468, appeal_to_fear: 0.5571, fud: 0.4358, bandwagon: 0.4614, whataboutism: 0.4832, loaded_language: 0.5122, glittering_generalities:

Pucynok 4.17 — Pe3ynbraT JIOryBaHHS aHa13y MOBIAOMIIEHHS

BaxnuBuM elIeMEHTOM apXiTeKTypu € po3poOJieHHI MeXaHi3M pe3epBHOI
knacudikamii (fallback mechanism), sxwuit 3abe3nedye y3romkeHicTh poOOTH JBOX
HelipoMepex. Y CUTyallisX, KOJIM MOJIeIb BUAUICHHS cyTHOCTeH (Span-model) ycmimiHo
1IeHTHQIKYE MI03pUIl PparMeHTH TEKCTY, alie KiIacugikatop He Jocsirae HeoOX1IHOTO
NOpOTY BIEBHEHOCTI JIS JKOAHOI 31 ClieU(PIYHUX TEXHIK, CUCTEMa BUKOHYE BTOPUHHY
NEepeBipKy Ha HASBHICTh O3HAK 3arajbHOI MaHIMYJISTUBHOI MOBH. SIKIIO BiJMOBiIHA
HMOBIpHICTh TIEPEBUIIYE MIHIMAJIBHO JOMYCTUMUN PiBEHb, IMOBIIOMIICHHS MapKYy€ThCS
SK MaHINyJSTUBHE HaBITh 0€3 YITKOI MPHUB'SI3KK JI0 CKJIQJHOI KaTteropii, 1o MiHIMi3ye

pusuk mpomycky 3arposu (False Negative).

manip_bot

Jo)

AHEKZOT AHR:

-CornacHo onpocam B YkpauHe

[|

YpoOBeHb AoBepua Banepuio 3anyXHomy coctaenseT 102%
-Tak, CTOM, a OTKyAa B3AANCL 2967

-MneHHble.

e 0) (R B

Baguk
AHex 0T gHs: -CornacHo onpocam B YkpanHe ® ypo...
AHaniz Ha MmaHinynauii: \ ¢

AHEKAOT AHA:

-CornacHo onpocam B YkpaunHe

-

YpOBeHb A0Bepua Banepuio 3any>xHomy coctaenset 102%
Tak, cTon, a OTKYAa B3ANNCh 2%7

-ﬂneHHuee.

| BusABneHi npuitomu:
|+ Anenauia 4o cTpaxy
- EmouiiiHo 3abapenexa moea

3MIHMUTY MOBY

Aetani mawinynauii

Pucynok 4.18 — Pe3ynpTaT aHami3y moBiIOMJICHHS HA TIPEIMET MAHITYJISITii

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 75
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

B3aemonis 3 KopucTyBayeM ONTHMI30BaHa IUIIXOM BUKOPHCTAHHS TUMYacOBOTO
CXOBHIIA CTaHIB y OMNEpPAaTHUBHIN MmaMm'saTi cepBepa. Pe3ynbTaT OCTaHHBOrO YCHIIIHOTO
aHami3y, BKJIOYAIOUM CIHMCOK BUSABIECHHMX TEXHIK, MPUB'SI3YIOTbCS A0 1IeHTU]IKaTOpa
KOpPHUCTYBaua, 110 J03BOJISIE peali3yBaTh (DYHKI[IF0 OTPUMAHHS JACTaT130BaHUX MOSICHEHD
yepe3 callback-zanut 0e3 HeOOXiTHOCTI TOBTOPHOTO TMPOTOHY TEKCTY dYepes
Helipomepexy. Takuil MIAXiA CYTTEBO 3HUXKYE OOUYMCITIOBAJIbHE HABAHTAXKCHHS Ha
CUCTEMY IpU aKTUBHIHN B3aeMoii 3 60TOM Ta 3a0e3neuye MUTTEBY peakilito iHTepdeincy
MU 3aMuTI A0B1IKOBOI iHPopMalii. DiHanbHa Bi3yalizallis pe3yJbTaTiB 3A1HCHIOETHCS 3
BUKOPHUCTAHHSM CICIIaIbHUX AJITOPUTMIB EKpaHyBaHHs CUMBOJIIB po3MitTku Markdown,
110 TapaHTy€ KOPEKTHE BOOpaXKEHHs BUIAIJICHUX (PparMeHTIB HEe3aIeKHO BiJl HASSBHOCTI

CIIy’k00BHX CUMBOJIIB Y BUX1THOMY TEKCTI.

manip_bot ~

'7 R
AHeKAOT AHA:
-CornacHo onpocam B YepanHe
=]
YPOBeHb AoBepA Banepuio 3anyxHomy cocTaenaeT 102%
-Tak, CTon, @ OTKYAa B3ANNCE 2567
-MneHHbIe.

Tz P -

Bagwmk
AHekAOT AHA: -CornacHo onpocam B YkpanHe == ypo...

AHaniz Ha maHinynauin:

AHEKAOT AHA:

-COrNacHo onpocam B YkpanHe

YPOBeHs A0BepA Banepiio 3amyxHoMy CoCTagnAeT 102%
Tak, CTOM, a8 OTKyAa B3ANNCE 2367 '

-nﬂEHHbIEO‘

. BuAenewi npuidomi:
= ANenALA Jo CTpaxy
| I EmouiiiHo 3abapeneHa MoBa

3MiHUTK MOBY

Aetani maninynawiin

LT

= ANenALiA Ao CTpaxy: BUKOPUCTOBYE CTRaXW ANA NepekoHaHHA Ges

Aokasie.

- EmoujiiHo 3afapeneHa MoBa: BUKOPUCTOBYE eMOUIHO 3apRixeHi

CNOBa ANA ENAVEY Ha AyMKY. |

7z te a message () 0
{ ? @ message =) ¥

Pucynoxk 4.19 — Ipuknan Bukopucranus callback-zanuris
Buie3aznaueni pimeHHs pOpMYyIOTh HUTICHY CUCTEMY aHali3y MaHIMyJIsTUBHOTO
KOHTEHTY, IPUIATHY JIJIs1 BAKOPUCTAHHS B yMOBaX 3 BUCOKUMHU BUMOTaMH JI0 ITBUIKO/I1.

[loenHaHHg KackaJgHO! JIOTIKM, aJalTHBHOI MOCTOOPOOKH pPE3yibTaTiB 1 MEXaHI3MIB

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 76
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

PE3epBHOI MEPEBIPKU TO3BOJISIIOTH JOCATTH 3MICTOBHO-IHTEPHPETOBAHUX PE3YJIbTATIB
HaBITh 3a HasBHOCTI MOMMJIKOBOI Kiacudikamii. Takuil minxig 3abe3neuye OamaHC MK
TOYHICTIO BUSBJICHHS, OOYHMCIIOBAJIBHOI €(EKTUBHICTIO 1 3pYYHICTIO B3aeMOJIIi 3
KOPHUCTYBaueM, L0 € KPUTHUYHO BAXKJIMBUM JUJISl IPAKTUYHOTO BIPOBAIKEHHS CHUCTEMU
aBTOMAaTU30BaHOI MEpPEBIPKM TEKCTIB aJalTOBAHOi JO pealbHOro 1H(GOPMAaIIiHOTO

CepeIOBHIIIA.
BucnoBknu 10 posainy 4

[IpoBeneHO OIIHIOBaHHS 1 TECTYyBaHHS PO3POOJIEHOro PINICHHS ISl BUSBIICHHS
MaHIMyJIATHBHUX TEXHIK y TEKCTI 13 ypaxyBaHHSAM BUMOT JO Y3arajbHIOBAaHOCTI,
CTaOUTBHOCTI ¥ MPAaKTHUYHOI MPHUJIATHOCTI CUCTEMHU MPU BUKOPUCTAHHI 3 pEaTIbHUMH
KOPUCTYBAaIlbKUMU JaHUMH. [IpoaHami3oBaHO CepeqOBHINE TPOBEACHHS HABYAHHS
Mojieneit Ha 6a3i mrardopmu Kaggle it o0rpyHTOBaHO HOTr0 BUKOPUCTAHHS [Tl BaJIiaanii
1 BIITBOPIOBAHOCTI PE3YJIbTATIB MOJIENICH.

[MpoananizoBaHo AWHaMiKy HaBuaHHs Span-detection Momeni, BCTaHOBJICHO
XapakTep MOCTYMOBOTO MiJBUILIEHHS SKOCTI BUSABICHHS MaHIMYJISTUBHUX (PPArMeHTIB,
JOCSATHEHHS IIaTo 1 e(QeKTUBHICTh 3aCTOCYBAaHHS MEXaHI3MY paHHBOI 3YIHUHKHU.
Busnaueno, 1110 MoJieNb JEMOHCTPYE MpiopuTeT BUcoKo1 moBHoTH (recall), mo miHimizye
PU3UK TPOIYCKY MAHIMYJSIHA, OJHAK CYMPOBOIKYETHCS PO3ZMHUTTIM MEXK OKPEMHUX
cnaHiB. OmmMcaHo OCHOBHI OOMEXEHHS IIi€l MoJeni, fKI 3yMOBJEHI pPO3MIpOM 1
PI3HOMaHITHICTIO HABYAJIbLHOT BUOIPKHU.

[IpoananizoBaHO pe3yabTaTH HABYAHHS 0AraToKIacoBO1 MyJIbTHICHOIOBOT MOIEN1
kimacuikaiii MaHINyISATUBHUX TEXHIK, 30KpeMa JAWHAMIKy Macro-F1 Ta moBemiHky
MOJIeIi B pO3pi3i OKpeMHUX KiaciB. BcTaHOBIICHO, 110 HAWBHINY CTAOUIBHICTD 1 TOYHICTD
JEMOHCTPYIOThH KJIaCH 3 YITKUMH JICKCUKO-CEMaHTUIYHUMHU MapKepaMH, TOJi SIK TEXHIKU
31 cmabko dopmanmizoBaHUMH a00 KOHTEKCTHO 3aJIeKHUMH O3HAKaMH 3ajUIIAIOTHCS
OCHOBHHM JIPKEPEJIOM MMOMUJIOK. byro BUsSBIEHO BIUTMB AMCOaaHCY KIIACiB HA 3araibHY

SIKICTh MOI[CJ'Ii Ta BUSHAYCHO OIITHUMAJIbHY TOYKY HaBYaHHA.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 77
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

byno omucano poGoTy IHTErpoBaHOI cHUCTEeMH B cepeaoBuill Tenerpam-00Ta,
BKJIIOYHO 3 KACKAJHOIO B3a€EMOIEI0 JABOX MOJENEH, alfOpUTMaMH MOCTOOPOOKH,
MEXaHI3MOM pe3epBHOI Kiacu@ikalii Ta ONTUMI3aliel0 OOYUCITIOBAJILHUX PECYPCIB.
byno migTBepmKEeHO, IO 3ampOINOHOBaHA apxXiTeKTypa 3a0e3neuye NPUIAHATHY
IIBUAKOAII0, Y3TO/UKEHICTh PE3YNbTATIB 1 3pYYHICTh I1HTEpIpeTanii sl KIHLEBOTO
KOpHCTYyBaya.

Jlo1aTKOBO BCTaHOBIICHO, 110 TECTYBaHHS B yMOBaX, HAONMKEHUX 10 PEaTbHOTO
BUKOPHUCTAHHS, JO3BOJIMIO BUSIBUTH HU3KY IPAKTUYHHUX ACIEKTIB, SIKi HE MPOSIBIISIOTHCS
Ha eTarli 130JIb0BaHOT0 HaBYaHHS Mojeiel. 3okpeMa, inTerpariis span-detection i class-
detection y xackaaHy apxiTeKTypy MpOJEMOHCTpyBasia KpaIly CTIHKICTbh J0 MIYMHHX 1
HECTPYKTYPOBAHUX TIOBIIOMJICHb, XapaKTepHHUX i |elegram-koHTeHTy, a TaKoX
3MEHIIIMJIA KUTbKICTh KpUTHYHUX oMmIok Tumty false negative. PeanizoBanuii MexaHi3m
OCTOOPOOKH CYTTEBO MIABUIIMIN Y3TOJKEHICTh PE3ybTaTiB 1 X IHTEPIPETOBAHICTh
IUI KIHIIEBOrO KopucTyBada. [IpaktuuyHe TecTyBaHHs Telegram-Gora minTBepauio
3[IaTHICTh PIIICHHS MPAIfOBATH B PEKMUMI PEaTbHOT0 Yacy 3 NPUMHITHOIO IIBUAKOIEIO,
30epiraroun cTabUIBHICTD 1 3pYYHICTh BUKOPUCTAHHS HABITh 32 OOMEXKEHUX HaBUYAIBHUX
pecypcis.

OTpumaHi pe3ynbTaTH B CYKYITHOCTI MIATBEPKYIOTh MPaIe31aTHICTh 1 TPaAKTHYHY
JOIUTBHICTh PO3POOJICHOTO PIMICHHS, a TAaKOXX OKPECIIOITh HAMPSIMHU TOJAJBIIOTO
BJIOCKOHAJICHHSI, TIOB’sI3aH1 3 PO3IIMPECHHSM 1 0aJaHCYBaHHSIM HAaBYAJIBLHOTO KOPITYCYy Ta

MOJAJIBIIO0 OIITUMI3AIIIEI0 MOIEIIEH.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 78
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

BUCHOBKH

Y xomi BuxkoHaHHsA KBajiiikaimiiiHOi poOOTH OyJ0 MpoaHaIi30BaHO W
CHPOEKTOBAHO 3aCTOCYHOK IS IOITYKY MaHIMYJISITHBHUX TEXHIK Y TEKCTOBUX JAHUX, IO
cIpusi€ MIABUIIECHHIO PIBHS JOBIPH 1 Oe3MeKku B U(PPOBOMY CEpEOBHILI, 30KpeEMa IS
maTdopM colliaIbHUX MEpeX Ta KomyHikailii. [IpoBeneHo anamniz mpeamMeTHOiT 00acTi,
OOIPYHTYBaHO aKTYyaJbHICTh PO3POOKU 3aCTOCYHKY B YMOBAaX 3pOCTaHHS Je31H(popmariii
I MaHINYJIAIIN, 1€ KITFOYOBUMH BUKIUKAMHU € IIIBUIKE BUSBIICHHS PUXOBAaHUX MATCPHIB
y 0araTOMOBHUX TEKCTaX. byno ommcaHoO TpeaMeTHEe CEepelOBHINEe, BKIFOYAOUN
apXITEKTYpy CUCTEM MOHITOPUHTY KOHTEHTY, B3a€MOJII0 KOPUCTYBadiB 1 creuudiky
00poOKku JnaHux y peanpHoMy uaci. [lpum aHamizi po3poOIFOBAHOTO 3aCTOCYHKY
JOCIIIHPKEHO MO>KJIMBOCTI IHTErpallii MTYYHOTO IHTEIEKTY ISl TPAHYJISPHOTO MOUIYKY
maninyssni. CopmoBaHo crernudikaimii BUMOr 0 TPOTrpaMHOIO 3a0e3nedeHHS,
CTaHJapTH I GYHKIIOHATIBHOCTI 1HTEpdEHCY I MPOAYKTUBHOT pOOOTH 3aCTOCYHKY.

Byno po3riisiHyTo METO0JIOT T 1 MIAX0/IB JIJIi HABYAHHS MOJIEJIEH OXOIUB CIEKTP
Bl 0a30BUX aJTOPUTMIB JI0 TEPEIOBUX aPXITEKTYp, NEMOHCTPYIOUU EBOJIOIIIO 10
KOHTEKCTyaJIbHO-OPIEHTOBAHUX METOMIB JJIsI €(PEKTUBHOTO PO3ITi3HABAHHS MPUXOBAHUX
enemenTiB. [IpoBeneHo aHami3 cTpaTerii HaBYaHHS JJIS ONTUMI3allii TpaHcHopMEepHHUX
MOJIENIEH, 110 3a0e3MeYIIO TEOPETUYHY OCHOBY JUIS ajanTallii 10 crerudikd MouryKy
MaHIIyJISIIH, BpaXOBYIOYH OOMEKEHICTh PECYpCiB Ta JUHAMIKY TEKCTOBHX JIAHUX.

Po3po6iieHo KOHLIENTyalbHy MOJIENb 3aCTOCYHKY 3 BOY/IOBAHUMH IHCTPYMEHTaMU
MITYYHOTO I1HTEJNEKTY HJii aBTOMAaTH30BAHOTO TOIIYKY MaHIMyJISTUBHUX TEXHIK, IO
MOEIHYE TEOPETHYHUN aHaJI3 3 MPAKTUYHUMHU PEKOMEH/IAIISIMU 100 BIPOBAIKCHHS.
Otpumani pe3yiabTaTH pO3BSI3YIOTH KIIIOUOBI TpoOiemMu Oe3meku B MUPPOBUX
KOMYHIKAIisIX, CHOpHUsAtoud (OPMYBAHHIO CTaHAAPTIB [JIs TOMIOHUX CHUCTEM 1
320€3IMeuyIoun CTIHKICTh 0 €TUYHHUX 1 TeXHIYHUX BUKIHKIB. [IepcrieKTUBY mOMaIbIInX
JOCIIHKEHb OXOTUTIOIOTH EMITIpUYHE TECTYBAHHS MPOTOTHITY Ha PO3MIMPEHUX HaOOpax
JAHUX, IHTETpalil0 MYJIbTUMOAAIBHUX MIAXOAIB (TEKCT, 300pakeHHs, aynio) Ta

aJarTaIiio ISl 1HIIKUX 1aThopM.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 79
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

HEPEJIIK JIZKEPEJI IIOCUJIAHHSA

1. Analog application: Fallacy Detector. URL:
https://finder.logicalfallacies.org/detector/ (Last accessed: 04.10.2025).

2. Analog application: Gaslighting Check. URL:
https://www.gaslightingcheck.com/dashboard/check (Last accessed: 04.10.2025).

3. Analog application: Fallacy Finder. URL: https://word.studio/tool/fallacy-
finder/?utm_source=chatgpt.com (Last accessed: 04.10.2025).

4, UNLP 2025 Shared Task on Detecting Social Media Manipulation. URL:
https://github.com/unlp-workshop/unlp-2025-shared-task/tree/main (Last accessed:
04.10.2025).

5. Bunanust Texty.org.ua. URL: https://texty.org.ua/ (Last accessed:
04.10.2025).

6. A Beginner’s Guide to Tokens, Vectors, and Embeddings in NLP. URL:
https://medium.com/@saschametzger/what-are-tokens-vectors-and-embeddings-how-
do-you-create-them-e2a3e698e037 (Last accessed: 04.10.2025).

7. Vaibhav T. Stratified sampling in Cohort-based data for Machine learning
Model development. International Scientific Journal of Engineering and Management.
2025. Ne 1. P. 1-5. DOI: 10.55041/ISJEM03377.

8. Detecting Manipulation in Ukrainian Telegram: A Transformer-Based
Approach to Technique Classification and Span Identification. URL:
https://aclanthology.org/2025.unlp-1.20.pdf (Last accessed: 04.10.2025).

Q. Multi-Class Text Classification with Scikit-Learn using TF-IDF model
URL: https://medium.com/@rohit_batra/multi-class-text-classification-with-scikit-
learn-using-tf-idf-model-161d395ce374 (Last accessed: 04.10.2025).

10. Complement Naive Bayes (CNB) Algorithm (math clearly
explained). URL: https://medium.com/@tarunsaxenal000/complement-naive-bayes-
cnb-algorithm-af7b5d2872bb

11. What is random forest? URL: https://www.ibm.com/think/topics/random-

forest

2025 p. IOxuenko Bagum

https://medium.com/@tarunsaxena1000/complement-naive-bayes-cnb-algorithm-af7b5d2872bb
https://medium.com/@tarunsaxena1000/complement-naive-bayes-cnb-algorithm-af7b5d2872bb
https://www.ibm.com/think/topics/random-forest
https://www.ibm.com/think/topics/random-forest

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 80
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

12. Gradient Boosting vs. Random Forest: Which Ensemble Method Should

You Use? URL: https://medium.com/@hassaanidrees?/qgradient-boosting-vs-random-

forest-which-ensemble-method-should-you-use-9f2ee294d9c6
13. Mastering LightGBM: Unravelling the Magic Behind Gradient Boosting.

URL: http://data-ai.theodo.com/en/technical-blog/mastering-lightgbm-unravelling-the-

magic-behind-gradient-boosting

14. Heinzerling B., Strube M. BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018), May. 2018.

15. How to implement CNN for NLP tasks like Sentence Classification. URL.:
https://medium.com/saarthi-ai/sentence-classification-using-convolutional-neural-
networks-ddad72c7048c (Last accessed: 04.10.2025).

16. Pradeep K. R., Abhinav K. Convolutional Neural Network for Text: A
Stepwise Working Guidance. SSRN Electronic Journal, Jan. 2021. P. 1-6. DOI:
10.2139/ssrn.3973041.

17. Recurrent Neural Networks - Combination of RNN and CNN.
URL.: https://collab.dvb.bayern/spaces/TUMIfdv/pages/69119924/Recurrent+Neural+N
etworks+-+Combination+of+RNN+and+CNN

18. Liquns$S., Yanchang L., MinT., Ming Y., Xueyuan B. CNN-BiLSTM Hybrid

Neural Networks with Attention Mechanism for Well Log Prediction. Journal of
Petroleum Science and Engineering, Oct. 2021. P. 108838. DOI:
10.1016/j.petrol.2021.108838.

19. Gated Recurrent Unit Networks. URL:

https://www.qgeeksforgeeks.org/machine-learning/gated-recurrent-unit-networks/

20. Recurrent Neural Network. URL: https://itwiki.dev/data-science/ml-
reference/ml-glossary/recurrent-neural-network (Last accessed: 04.10.2025).

21. Deep learning architectures. URL: https://developer.ibm.com/articles/cc-
machine-learning-deep-learning-architectures/ (Last accessed: 04.10.2025).

22. Marcial S. A., Karthik D., Yuning W., Ricardo V. Easy attention: A simple

2025 p. IOxuenko Bagum

https://medium.com/@hassaanidrees7/gradient-boosting-vs-random-forest-which-ensemble-method-should-you-use-9f2ee294d9c6
https://medium.com/@hassaanidrees7/gradient-boosting-vs-random-forest-which-ensemble-method-should-you-use-9f2ee294d9c6
http://data-ai.theodo.com/en/technical-blog/mastering-lightgbm-unravelling-the-magic-behind-gradient-boosting
http://data-ai.theodo.com/en/technical-blog/mastering-lightgbm-unravelling-the-magic-behind-gradient-boosting
https://collab.dvb.bayern/spaces/TUMlfdv/pages/69119924/Recurrent+Neural+Networks+-+Combination+of+RNN+and+CNN
https://collab.dvb.bayern/spaces/TUMlfdv/pages/69119924/Recurrent+Neural+Networks+-+Combination+of+RNN+and+CNN
https://www.geeksforgeeks.org/machine-learning/gated-recurrent-unit-networks/

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 81
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

self-attention mechanism for Transformers, Aug. 2023. P. 7-9. DOI:
10.48550/arXiv.2308.12874.

23. How Transformers Work: A Detailed Exploration of Transformer
Architecture. URL.: https://www.datacamp.com/tutorial/how-transformers-work

24. Focal Loss VS. Binary Cross Entropy Loss. URL.:
https://blog.dailydoseofds.com/p/focal-loss-vs-binary-cross-entropy (Last accessed:
04.10.2025).

25. Layer-Wise Learning Rate in PyTorch. URL:
https://kozodoi.me/blog/20220329/discriminative-Ir (Last accessed: 04.10.2025).

26. Fine tuning Vs Pre-training. URL: https://medium.com/@eordaxd/fine-
tuning-vs-pre-training-651d05186faf (Last accessed: 04.10.2025).

27. Analysis of English Writing Text Features Based on Random Forest and
Logistic Regression Classification Algorithm. URL.:
https://onlinelibrary.wiley.com/doi/10.1155/2022/6306025 (Last accessed: 04.10.2025).

28. «Unveiling the Power of Light GBM». URL.:
https://medium.com/@venkatyogesh003/unveiling-the-power-of-light-gbm-
e3b46743a2b2 (Last accessed: 04.10.2025).

29. XLM-RoBERTa: The alternative for non-english NLP. URL:
https://medium.com/deepset-ai/xIm-roberta-the-multilingual-alternative-for-non-
english-nlp-cfOb889cchbbf (Last accessed: 04.10.2025).

30. What Does Pre-training a Neural Network Mean? URL:

https://www.baeldung.com/cs/neural-network-pre-training

31. What is fine-tuning? URL.: https://www.ibm.com/think/topics/fine-tuning

32. Transfer Learning S Domain Adaptation. URL.:

https://www.baeldung.com/cs/transfer-learning-vs-domain-adaptation

33. What is few shot prompting? URL.: https://www.ibm.com/think/topics/few-

shot-prompting

34. What IS continual learning? URL:
https://www.ibm.com/think/topics/continual-learning

2025 p. IOxuenko Bagum

https://www.baeldung.com/cs/neural-network-pre-training
https://www.ibm.com/think/topics/fine-tuning
https://www.baeldung.com/cs/transfer-learning-vs-domain-adaptation
https://www.ibm.com/think/topics/few-shot-prompting
https://www.ibm.com/think/topics/few-shot-prompting
https://www.ibm.com/think/topics/continual-learning

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 82
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

JIOJATOK A

Anpodanis kBanigikaniiHol MaricrepcbKoi podoTn
PesynbTaT mocnimkeHHs O0yao NpeIcTaBiIeHo Ha KOH(DEPEHIi:

— Morunsuceki untanHs — 2025, : AnHani3 MaHINYJISTUBHOCTI HOBHUH 13

BUKOPHUCTaHHSM anroputMmiB MamuHHoro HaB4yaHHs : XXVIII Bceykp. Hayk.-mpakr.

KOH(.

: Te3u pomnoBiged : Komm'rorepHi Hayku. TexHiuni Hayku, Muxomnais, 10-14

mucton. 2025 p. / UHY im. Iletpa Morwm. — MukonaiB : Bun-so UHY im. Iletpa
Morunu, 2025

2025 p.

MiHicrepcTBo ocBiTH | HayKn YKpaiHu
YopromopcehkKuii Hallionanbiuii yriepeurer imeni Ilerpa Morumm
JAHY «IncTuTyT MOZIEpHIi3aLii 3MicTy OCBITHY
ITiBennuii naykoswuii nentp HAH ta MOH
IHcTHTYT yKpaiHchKoi apxeorpadii Ta Jukepeo3HaBCTBa
imeni M. C. I'pymecbkoro HAH Ykpaiuu
I[TepBunna npodeninkosa oprauizauis YHY im. [Terpa Moruan

O

AUuHy e

«MOT'MWJISTHCBKI YU TAHHS — 2025:
JOCBi/l T2 TeHeHNil PO3BHTKY CycHijibcTBa B YKpaiHi:
r100a/1bHUH, HAIOHAJILHHUI Ta PerioHAIbHHI aCTIEKTH»

XXVIII Beeykpaincbka HayKOBO-TPaKTHYHA KOH(EpeHLis

TE3H JIONOBIJIEN

TEXHIYHI HAYKH

Mukomnais, 10-14 muctonaga 2025 poky

Mukonais — 2025

Pucynok A.1 — OOkinanunka 30ipHUKa T€3 JOMOBiAeH KOH(DepeHIii

Morunsgacebki untanasg — 2025

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs

Amnamnis MaHiHyJ'IHTI/IBHOCTi HOBMH 13 BUKOPUCTAHHAM aJ'II‘OpI/ITMiB MAalIIMHHOI'O HaBYaHHS

JOJATOK b
JlicTHHT KOy HABYAHHSA MoOJeIel

Kon daitmy span_learning.py:

import numpy as np

import pandas as pd

import torch

from torch import nn

from torch.utils.data import Dataset, Dataloader

from transformers import (
AutoModelForTokenClassification,
AutoTokenizer,
get_linear_schedule_with_warmup,
AutoConfig

)

from sklearn.model selection import train_test_split

from tqdm.auto import tqdm

import warnings

warnings.filterwarnings('ignore')

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")

MODEL_NAME = "FacebookAI/xlm-roberta-large"
MAX_LEN = 512
BATCH_SIZE = 2
LEARNING_RATE = 2e-5
EPOCHS = 8

SEED = 42
TRAIN_VAL_SPLIT = 0.15
WEIGHT_DECAY = 0.01
ACCUMULATION_STEPS = 4
LLRD_RATE = 0.9
SPAN_MERGE_DISTANCE = 1
PATIENCE = 3

torch.manual_seed(SEED)

np.random.seed(SEED)

if torch.cuda.is_available():
torch.cuda.manual seed_all(SEED)

class WeightedFocallLoss(nn.Module):

Weighted Focal Loss implementation.

Helps focusing on hard-to-classify examples and handles class imbalance.

alpha: Weights for each class (e.g., [0 weight, B_weight, I weight])

gamma: Focusing parameter (>= ©). Higher gamma focuses more on hard examples.

def _init_ (self, alpha=[0.1, 0.45, 0.45], gamma=2.0, ignore_index=-100):

super(WeightedFocallLoss, self). init ()
self.alpha = torch.tensor(alpha).float()
self.gamma = gamma

self.ignore_index = ignore_index
self.log softmax = nn.LogSoftmax(dim=-1)

def forward(self, inputs, targets):

2025 p.

IOxnenko Bagnm

83

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

mask = targets != self.ignore_index
valid_inputs = inputs[mask]
valid_targets = targets[mask]

if valid_targets.numel() == @:
return torch.tensor(0.0, device=inputs.device, requires_grad=True)

if self.alpha.device != inputs.device:
self.alpha = self.alpha.to(inputs.device)

log probs = self.log_softmax(valid_inputs)

gathered_log probs = log _probs.gather(1l, valid_targets.unsqueeze(1)).squeeze(1)

probs = torch.exp(gathered_log probs)

alpha_t = self.alpha[valid_targets]

focal _loss = alpha_t * torch.pow(1l - probs, self.gamma) * (-gathered_log probs)

return focal_loss.mean()

def compute_span_f1(true_spans, pred_spans):

Compute span-level precision, recall, and F1 using overlap criterion

true_spans = set(true_spans)
pred_spans = set(pred_spans)

if not true_spans and not pred_spans:

return 1.0, 1.0, 1.0

if not true_spans:

return 0.0, 1.0, 0.0

if not pred_spans:

tp =

return 1.0, 0.0, 0.0

0

for p_span in pred_spans:

for t_span in true_spans:
if max(p_span[@], t_span[@]) < min(p_span[1], t_span[1]):
tp += 1
break

precision = tp / len(pred_spans) if pred_spans else 0.0
recall = tp / len(true_spans) if true_spans else 0.0
tp_for_recall = @

for t_span in true_spans:

for p_span in pred_spans:
if max(p_span[@], t_span[@]) < min(p_span[1], t_span[1]):
tp_for_recall += 1
break

recall = tp for_recall / len(true_spans) if true_spans else 0.0

84

fl = 2 * precision * recall / (precision + recall) if (precision + recall) > © else 0.0

return precision, recall, f1

def load _data(file path):

2025 p.

Load data from parquet file
df =

pd.read_parquet(file_path)

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

return df

def process_numpy_trigger_words(trigger_array):
"""Convert numpy array of trigger words to list of tuples
if not isinstance(trigger_array, np.ndarray) or trigger_array.ndim == 0
trigger_array.size ==
return []

result = []
if trigger_array.ndim == 2 and trigger_array.shape[1l] == 2:
for arr in trigger_array:
if np.issubdtype(arr.dtype, np.number) and len(arr) == 2:
try:
start, end = int(arr[@]), int(arr[1])
if start < end :
result.append((start, end))
except (ValueError, TypeError):

continue
elif trigger_array.ndim == 1 and trigger_array.dtype == ‘'object':
for item in trigger_array:
if isinstance(item, (list, tuple, np.ndarray)) and len(item) == 2:

try:
start, end = int(item[@]), int(item[1])
if start < end:
result.append((start, end))
except (ValueError, TypeError):
continue
return result

def align tokens_and_spans(tokenizer, text, spans, max_length=MAX_LEN):
Map character-level spans to token-level spans using BIO tagging scheme.
Returns token_ids and token-level labels (0=Outside, 1=Beginning, 2=Inside).
Handles cases with no spans (all labels become 9).
encoded = tokenizer(
text,
return_offsets_mapping=True,
add_special_ tokens=True,
truncation=True,
max_length=max_length,
padding=False
)
input_ids = encoded["input_ids"]
offset_mapping = encoded["offset_mapping"]

labels = [@] * len(input_ids)

if spans:
sorted_spans = sorted([s for s in spans if s[@] < s[1]], key=lambda x: x[@])

span_idx = ©
for i, (start, end) in enumerate(offset_mapping):
if start == end == 0:
labels[i] = -100
continue
token_label = ©

while span_idx < len(sorted _spans) and sorted_spans[span_idx][1] <= start:

2025 p. IOxuenko Bagum

85

or

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 86
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

span_idx += 1

token_overlaps = False
for k in range(span_idx, len(sorted_spans)):
span_start, span_end = sorted_spans[k]
if span_start >= end:
break

if max(start, span_start) < min(end, span_end):
token_overlaps = True
is_begin = False
if start >= span_start:
if start == span_start:
is_begin = True
if 1 > @ and labels[i-1] ==
prev_start, prev_end = offset_mapping[i-1]
if prev_end <= span_start:
is_begin = True

char_tags = ['0'] * (end + 1)

try:
if span_start < len(char_tags): char_tags[span_start] = 'B
for char_i in range(span_start + 1, min(span_end,

len(char_tags))):

char_tags[char_i] = 'I
except IndexError: pass

token_char_tags = char_tags[start:end]
if 'B' in token_char_tags:
token_label =1
elif 'I' in token_char_tags:
token_label = 2
break

labels[i] = token_label

if token_label == 1 and i + 1 < len(labels):
next_start, next_end = offset_mapping[i+1]
if next_start == end:
for k in range(span_idx, len(sorted spans)):
span_start, span_end = sorted_spans[k]
if span_start >= next_end: break
if max(next_start, span_start) < min(next_end, span_end):
if labels[i+l] == @:
labels[i+1l] = 2
break

return {
"input_ids": input_ids,
"attention_mask": encoded["attention_mask"],
"labels": labels,
"offset_mapping": offset_mapping,
"text": text,

}

class ManipulationSpanDataset(Dataset):
def _init (self, texts, spans, tokenizer, max_len=MAX_ LEN):
self.texts = texts
self.spans = spans

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 87
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

self.tokenizer = tokenizer
self.max_len = max_len
self.encodings = []

print(f"Tokenizing and aligning spans for {len(texts)} examples...")
for text, span_list in tqdm(zip(texts, spans), total=len(texts), desc="Processing
dataset"):
if not isinstance(span_list, list):
span_list = []
processed = align_tokens_and_spans(tokenizer, text, span_list, max_len)
self.encodings.append(processed)

def _ len_ (self):
return len(self.encodings)

def _ getitem_ (self, idx):

encoding = self.encodings[idx]

item = {
"input_ids": torch.tensor(encoding["input_ids"], dtype=torch.long),
"attention_mask": torch.tensor(encoding["attention_mask"], dtype=torch.long),
"labels": torch.tensor(encoding["labels"], dtype=torch.long)

}

item["offset_mapping"] = encoding["offset_mapping"]

item["text"] = encoding["text"]

return item

def collate_fn(batch):
max_len = max([len(item["input_ids"]) for item in batch])
tokenizer pad_token_id = AutoTokenizer.from_pretrained(MODEL_NAME).pad token_id

input_ids_padded = []
attention_mask_padded = []
labels_padded = []
offset_mappings = []

texts = []

for item in batch:
padding len = max_len - len(item["input_ids"])

input_ids = torch.cat([item["input_ids"], torch.tensor([tokenizer pad token_id] *
padding len, dtype=torch.long)])

attention_mask = torch.cat([item["attention_mask"], torch.zeros(padding len,
dtype=torch.long)])
labels = torch.cat([item["labels"], torch.tensor([-100] * padding_len,

dtype=torch.long)])

input_ids_padded.append(input_ids)
attention_mask_padded.append(attention mask)

labels padded.append(labels)
offset_mappings.append(item["offset mapping"] + [(©, ©)] * padding len)
texts.append(item["text"])

return {
"input_ids": torch.stack(input_ids_padded),
"attention_mask": torch.stack(attention_mask padded),
"labels": torch.stack(labels padded),
"offset_mappings": offset_mappings,
"texts": texts,

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 88
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

}

def tokens_to_char_spans(tokenizer, text, token_preds, offset_mapping, merge_distance=1):
"""Convert BIO token-level predictions to character-level spans with merging"""
char_preds = []
current_span = None

for i, (start, end) in enumerate(offset_mapping):
if start == end ==
continue
if i >= len(token_preds):
continue

pred = token_preds[i]

if pred == 1:
if current_span is not None:
char_preds.append(tuple(current_span))
current_span = [start, end]
elif pred == 2:
if current_span is not None:
if start >= current_span[0]:
current_span[1] = max(current_span[1], end)
else:
char_preds.append(tuple(current_span))
current_span = [start, end]

else:
current_span = [start, end]
elif pred == 0:
if current_span is not None:
char_preds.append(tuple(current_span))
current_span = None

if current_span is not None:
char_preds.append(tuple(current_span))

char_preds = [span for span in char_preds if span[@] < span[1]]
if not char_preds: return []

char_preds.sort(key=lambda x: x[0])

if len(char_preds) > 1:
merged_spans = [char_preds[0]]
for span in char_preds[1:]:
prev_span = merged_spans[-1]
if span[@] - prev_span[1l] <= merge_distance:
merged_spans[-1] = (prev_span[@], max(prev_span[1], span[1]))
else:
merged_spans.append(span)
char_preds = merged_spans

return char_preds

def get_optimizer_grouped_parameters(
model, learning_rate, weight_decay, layerwise 1lr_decay_ rate

Groups parameters for applying Layer-wise Learning Rate Decay (LLRD).
Assigns different learning rates and weight decay to different parts of the model.

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 89
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

no_decay = ["bias", "LayerNorm.weight"]
model_prefix = model.base_model_prefix

encoder = getattr(model, model prefix).encoder
layers = encoder.layer

num_layers = len(layers)
print(f"Applying LLRD with rate {layerwise_lr_decay_rate} over {num_layers} layers.")

optimizer_grouped_parameters = [

{
"params": [
p for n, p in model.named_parameters() if "classifier" in n or "pooler" in
n
1,
"weight_decay": 0.0,
"1r": learning_rate,
¥
]
for i, layer in enumerate(layers):
lr_scale = layerwise_lr_decay rate ** (num_layers - 1 - i)
layer_1r = learning_rate * 1lr_scale
optimizer_grouped_parameters += [
"params": [
p for n, p in layer.named_parameters() if not any(nd in n for nd in
no_decay)
1,
"weight_decay": weight_decay,
"1r": layer_1r,
¥
{
"params": [
p for n, p in layer.named_parameters() if any(nd in n for nd in no_decay)
1,
"weight_decay": 0.0,
"lr": layer_1r,
¥
]
embeddings = getattr(model, model prefix).embeddings
embeddings_lr_scale = layerwise_lr_decay_rate ** num_layers
embeddings lr = learning rate * embeddings_lr_scale
optimizer_grouped parameters += [
"params": [
p for n, p in embeddings.named_parameters() if not any(nd in n for nd in
no_decay)
1,
"weight_decay": weight_decay,
"lr": embeddings_1r,
¥
{
"params": [
p for n, p in embeddings.named_parameters() if any(nd in n for nd in
no_decay)

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 90
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

15
"weight_decay": 0.0,
"lr": embeddings_1r,
}s
]

all param_names = {n for n, p in model.named_parameters()}
grouped_param_names = set()
for group in optimizer_grouped_parameters:
for param in group["params"]:
for n, p in model.named_parameters():
if p is param:

grouped_param_names.add(n)

break
assert all _param_names == grouped_param_names, "Not all parameters were assigned to

optimizer groups!"

return optimizer_grouped_parameters

def train_model(model, train_dataloader, val dataloader, optimizer, scheduler, device,
epochs, tokenizer, patience=PATIENCE, accumulation_steps=ACCUMULATION_STEPS,
span_merge_distance=SPAN_MERGE_DISTANCE):

best_val f1 = 0.0

best_model _state = None

early stop_counter = ©

criterion = WeightedFocallLoss(alpha=[0.1, .45, ©0.45], gamma=2.0, ignore_index=-
100) .to(device)

num_train_steps = len(train_dataloader) // accumulation_steps * epochs

global _step = ©
for epoch in range(epochs):
print(f"\n--- Epoch {epoch+1}/{epochs} ---")

model.train()
total_train_loss = @

all train_preds_spans = []
all train_true_spans = []

train_pbar = tqdm(train_dataloader, desc=f"Training Epoch {epoch+1}", leave=False)
optimizer.zero grad()

for step, batch in enumerate(train_pbar):
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
offset_mappings = batch["offset_mappings"]
texts = batch["texts"]

outputs = model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits

loss = criterion(logits.view(-1, model.config.num_labels), labels.view(-1))

loss = loss / accumulation_steps
total _train_loss += loss.item() * accumulation_steps

loss.backward()

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 91
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

if (step + 1) % accumulation_steps == 0 or (step + 1) == len(train_dataloader):
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
global_step += 1

token_predictions = torch.argmax(logits, dim=2).cpu().numpy()

for i in range(len(texts)):
pred_spans = tokens_to_char_spans(
tokenizer, texts[i], token_predictions[i], offset_mappings[i],
merge_distance=span_merge_distance
)

all train_preds_spans.append(pred_spans)

try:
original item_index = train_dataloader.dataset.texts.index(texts[i])
true_spans = train_dataloader.dataset.spans[original_item_index]
all train_true_spans.append(true_spans)
except (ValueError, AttributeError):
print(f"Warning: Could not find true spans for text:
{texts[i][:50]}...")
all train_true_spans.append([])

train_pbar.set postfix({
"loss": f"{loss.item() * accumulation_steps:.4f}",
"Ir": f"{scheduler.get last 1r()[0]:.2e}"

1)

avg_train_loss = total train_loss / len(train_dataloader)

train_fls = []
for true, pred in zip(all_train_true_spans, all train_preds_spans):
_, _, 1 = compute_span_f1(true, pred)
train_fls.append(f1)
avg_train_f1 = np.mean(train_f1ls) if train_f1ls else 0.0
print(f"Epoch {epoch+l1} Train Loss: {avg_train_loss:.4f} | Train F1:
{avg_train_f1:.4f}")

model.eval()

total_val loss = ©

all val preds_spans = []
all val true_spans = []

val pbar = tqdm(val_dataloader, desc=f"vValidation Epoch {epoch+1}", leave=False)

with torch.no_grad():
for batch in val pbar:
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
offset_mappings = batch["offset_mappings"]
texts = batch["texts"]

outputs = model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits

loss = criterion(logits.view(-1, model.config.num_labels), labels.view(-1))

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 92
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

total_val_loss += loss.item()

token_predictions = torch.argmax(logits, dim=2).cpu().numpy()
for i in range(len(texts)):
pred_spans = tokens_to_char_spans(
tokenizer, texts[i], token_predictions[i], offset_mappings[i],
merge_distance=span_merge_distance
)

all val preds_spans.append(pred_spans)

try:
original_item_index = val_dataloader.dataset.texts.index(texts[i])
true_spans = val _dataloader.dataset.spans[original_item_index]
all val true_spans.append(true_spans)
except (ValueError, AttributeError):
print(f"Warning: Could not find true spans for validation text:
{texts[i][:50]}...")
all val true_spans.append([])

avg _val loss = total val loss / len(val_dataloader)
val fls = []
val _precisions = []
val _recalls = []
for true, pred in zip(all_val true_spans, all val preds_spans):
p, r, f1 = compute_span_f1(true, pred)
val precisions.append(p)
val recalls.append(r)
val fils.append(f1)

avg_val precision = np.mean(val_precisions) if val precisions else 0.0
avg_val recall = np.mean(val _recalls) if val recalls else 0.0
avg val fl1 = np.mean(val fls) if val fls else 0.0

print(f"Epoch {epoch+1} Val Loss: {avg_val _loss:.4f} | val Precision:
{avg_val precision:.4f} | val Recall: {avg val recall:.4f} | val F1: {avg _val f1:.4f}")

if avg val f1 > best_val f1:
best_val f1 = avg val_f1
best model state = model.state dict().copy()
print(f"#%> New best model saved with F1: {best val f1:.4f}!")

early stop_counter = 0
else:
early stop_counter += 1
print(f"No F1 improvement ({avg val f1:.4f} vs best {best val f1:.4f}).
Counter: {early stop_counter}/{patience}")
if early_stop_counter >= patience:
print(f"Early stopping triggered after {epoch+l1l} epochs.™)
break

if best_model_state:
print(f"Loading best model state with F1: {best val f1:.4f}")
model.load state dict(best model state)
else:
print("Warning: No best model state found (e.g., validation F1 never improved).
Using model from last epoch.")

return model

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs

93

Amnamnis MaHiHyJ'IHTI/IBHOCTi HOBMH 13 BUKOPUCTAHHAM aJ'II‘OpI/ITMiB MAalIIMHHOI'O HaBYaHHS

def predict_spans(model, tokenizer, texts, device, max_len=MAX_LEN, batch_size=16,

span_merge_distance=SPAN_MERGE_DISTANCE):
model.eval()
all char_spans = []

class InferenceDataset(Dataset):
def __init__ (self, texts, tokenizer, max_len):
self.texts = texts
self.tokenizer = tokenizer
self.max_len = max_len

def _ len_ (self):
return len(self.texts)

def _ getitem_ (self, idx):

text = self.texts[idx]

encoding = self.tokenizer(
text,
return_offsets_mapping=True,
add_special_tokens=True,
truncation=True,
max_length=self.max_len,
padding=False,
return_tensors=None,

)
return {
"text": text,
"input_ids": encoding["input_ids"],
"attention_mask": encoding["attention_mask"],
"offset_mapping": encoding["offset_mapping"]
}

def inference collate fn(batch):
texts = [item["text"] for item in batch]

offset_mappings = [item["offset_mapping"”] for item in batch]
max_batch_len = max([len(item["input_ids"]) for item in batch])

tokenizer_pad_token_id = tokenizer.pad_token_id

input_ids_padded = []
attention_mask_padded = []
offset_mappings_padded = []

for item in batch:
padding len = max_batch_len - len(item["input_ids"])

input_ids = item["input_ids"] + [tokenizer_pad token_id] * padding_len

attention_mask = item["attention_mask"] + [@] * padding_len
offset_mapping = item["offset_mapping"] + [(0, ©)] * padding len

input_ids_padded.append(torch.tensor(input_ids, dtype=torch.long))
attention_mask padded.append(torch.tensor(attention_mask, dtype=torch.long))
offset_mappings_padded.append(offset_mapping)

return {
"texts": texts,
"input_ids": torch.stack(input_ids_padded),
"attention_mask": torch.stack(attention_mask_ padded),
"offset_mappings": offset_mappings_padded

}

inference_dataset = InferenceDataset(texts, tokenizer, max_len)

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 94
AHaniz MaHIMyJIATUBHOCTI HOBUH 13 BUKOPUCTaHHSM alITOPUTMIB MAIIMHHOTO HABYaHHS

inference_dataloader = DataLoader(inference_dataset, batch_size=batch_size,
shuffle=False, collate_fn=inference_collate_fn)

print(f"Predicting spans for {len(texts)} texts with batch size {batch_size}...")
with torch.no_grad():
for batch in tgdm(inference_dataloader, desc="Prediction"):
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
offset_mappings_batch = batch["offset_mappings"]
texts_batch = batch["texts"]

outputs = model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits

token_predictions = torch.argmax(logits, dim=2).cpu().numpy()

for i in range(len(texts_batch)):
valid_len = sum(attention_mask[i].cpu().numpy())
current_offset_mapping = offset_mappings_batch[i]
current_predictions = token_predictions[i][:1len(current_offset_mapping)]

char_spans = tokens_to_char_spans(
tokenizer, texts_batch[i], current_predictions,
current_offset_mapping, merge_distance=span_merge_distance

all char_spans.append(char_spans)
return all _char_spans

def format_spans_for_submission(spans_list):
"""Format spans list to match submission format '[(startl, endl), (start2, end2)]'"""
if not spans_list:
return "[]"
return str([(int(s[@]), int(s[1])) for s in spans_list])

def main():

print("Loading training data...")

train_df = pd.read_parquet("/kaggle/input/manip-
dataset/data/span_detection/train.parquet")

print("Processing trigger words...")

train_df['trigger words'] = train_df['trigger words'].fillna('').apply(lambda x: x if
isinstance(x, np.ndarray) else np.array([]))

train_df['trigger_words_processed'] =
train_df['trigger words'].apply(process_numpy_ trigger_ words)

texts = train_df['content'].tolist()
spans = train_df['trigger words_processed'].tolist()
print(f"Total raw examples: {len(texts)}")

valid indices = [i for i, txt in enumerate(texts) if isinstance(txt, str) and
len(txt.strip()) > 0]

texts = [texts[i] for i in valid_indices]

spans = [spans[i] for i in valid_indices]

print(f"Using {len(texts)} non-empty text examples for training/validation.™)

print(f"Splitting data into train/validation ({1-
TRAIN_VAL_SPLIT:.0%}/{TRAIN_VAL_SPLIT:.0%})...")

train_texts, val texts, train_spans, val spans = train_test split(

2025 p. IOxuenko Bagum

max_

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 95
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

texts, spans, test_size=TRAIN_VAL_SPLIT, random_state=SEED
)
print(f"Training examples: {len(train_texts)}")
print(f"Validation examples: {len(val_texts)}")

print("Loading tokenizer...™)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

print("Creating datasets (this may take a while)...")

train_dataset = ManipulationSpanDataset(train_texts, train_spans, tokenizer,
len=MAX_LEN)

val_dataset = ManipulationSpanDataset(val_texts, val_spans, tokenizer, max_len=MAX_LEN)

print("Creating dataloaders...™)

train_dataloader = DatalLoader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
collate_fn=collate_fn,
num_workers=2

val_dataloader = Dataloader(
val_dataset,
batch_size=BATCH_SIZE * 2,
shuffle=False,
collate_fn=collate_fn,
num_workers=2

)

print("Loading model...")

config = AutoConfig.from pretrained(MODEL_NAME, num_labels=3)

model = AutoModelForTokenClassification.from _pretrained(MODEL_NAME, config=config)
model.to(device)

print(f"Setting up AdamW optimizer with LLRD (Rate: {LLRD RATE})...")
optimizer_ parameters = get optimizer_grouped_parameters(

model,

learning_rate=LEARNING_RATE,

weight_decay=WEIGHT_DECAY,

layerwise_lr_decay_rate=LLRD_RATE

)

optimizer = torch.optim.AdamW(optimizer parameters, 1lr=LEARNING_RATE, eps=1e-8)
print("Setting up learning rate scheduler...")

num_update_steps _per_epoch = (len(train_dataloader) + ACCUMULATION STEPS - 1) //

ACCUMULATION_STEPS

total_steps = num_update_steps_per_epoch * EPOCHS
num_warmup_steps = int(@.1 * total steps)

print(f"Total optimization steps: {total steps}, Warmup steps: {num_warmup_steps}")
scheduler = get_linear_schedule with_warmup(

optimizer,

num_warmup_steps=num_warmup_steps,

num_training_steps=total_steps

)

print("Starting training...")
model = train_model(
model=model,

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 96
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
optimizer=optimizer,
scheduler=scheduler,

device=device,

epochs=EPOCHS,

tokenizer=tokenizer,

patience=PATIENCE,
accumulation_steps=ACCUMULATION_STEPS,
span_merge_distance=SPAN_MERGE_DISTANCE

)
print("Saving the fine-tuned model...")
output_dir = "./manipulation_span_model_improved"

model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
print(f"Model saved to {output_dir}")

print("Loading test data...")

test_df = pd.read_csv("/kaggle/input/manip-dataset/data/span_detection/test.csv")
test_texts = test df['content'].tolist()

test_ids = test df['id'].tolist()

valid_test _indices = [i for i, txt in enumerate(test_texts) if isinstance(txt, str) and
len(txt.strip()) > 0]

test_texts_filtered = [test_texts[i] for i in valid_test_indices]

test_ids_filtered = [test_ids[i] for i in valid_test_indices]

print(f"Predicting on {len(test_texts_filtered)} non-empty test examples.")

print("Making predictions on test data...")
predictions = predict_spans(
model=model,
tokenizer=tokenizer,
texts=test_texts_filtered,
device=device,
max_len=MAX_LEN,
batch_size=BATCH_SIZE * 4,
span_merge_distance=SPAN_MERGE_DISTANCE

)
prediction map = {id_: spans for id_, spans in zip(test_ids filtered, predictions)}

print("Formatting predictions for submission...")
submission_data = []
for id_ in test_ids:
spans = prediction map.get(id_, [])
submission_data.append({
'id': id_,
"trigger words': format_spans_for_ submission(spans)

})

submission_df = pd.DataFrame(submission_data)
submission_df.to _csv("submission.csv", index=False)
print("Submission file 'submission.csv' saved successfully!")

if _name__ == "__main__":

main()

Kon daitry span_learning.py:

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs

Amnamnis MaHiHyJ'IHTI/IBHOCTi HOBMH 13 BUKOPUCTAHHAM aJ'II‘OpI/ITMiB MAalIIMHHOI'O HaBYaHHS

import os
import numpy as np
import pandas as pd
import torch
import ast
import re
import random
from torch import nn
from sklearn.model selection import train_test_split, StratifiedKFold
from sklearn.metrics import fl_score, classification_report
from transformers import (
AutoTokenizer,
AutoModel,
AutoModelForSequenceClassification,
#AdamW,
get_linear_schedule_with_warmup,
get_cosine_schedule_with_warmup,
DataCollatorWithPadding
)
from torch.optim import AdamW
from tqdm.auto import tqdm
from torch.utils.data import Dataset, Dataloader
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
import nltk
from nltk.corpus import stopwords
import logging
import gc

logging.basicConfig(level=1logging.INFO, format='%(asctime)s - %(message)s')

logger = logging.getLogger(__name_)

SEED = 42

torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
np.random.seed(SEED)

random.seed(SEED)
os.environ["PYTHONHASHSEED"] = str(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

CONFIG = {
"model_name": "xlm-roberta-large",
"max_length": 512,
"batch_size": 8,
"learning_rate": 1.8e-5,
"weight_decay": 0.01,
"epochs": 10,
"warmup_ratio": 0.1,
"dropout_rate": 0.3,

"device": torch.device("cuda" if torch.cuda.is_available() else "cpu"),

"gradient_accumulation_steps": 4,
"gradient_clipping": 1.0,
"scheduler": "cosine",
"patience": 4,

"label_smoothing": ©.05,
"use_focal loss": False,
"focal_gamma": 2.0,
"use_weighted_loss": True,

2025 p.

IOxnenko Bagnm

97

}

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 98
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

"use_data_augmentation": True,
"augment_ratio": 0.2,
"run_analysis": True,

TECHNIQUES = [

]

'straw_man', ‘'appeal_to_fear', 'fud', 'bandwagon’', 'whataboutism',
'loaded_language', 'glittering_generalities', 'euphoria', 'cherry_picking', 'cliche’

class FocallLoss(nn.Module):

def

def

def

def __init_ (self, gamma=2.0, alpha=None, reduction='mean'):
super(FocallLoss, self). init_ ()
self.gamma = gamma
self.alpha = alpha
self.reduction = reduction

def forward(self, inputs, targets):
BCE_loss = nn.BCEWithLogitsLoss(reduction="none"')(inputs, targets)
pt = torch.exp(-BCE_loss)
F_loss = (1-pt)**self.gamma * BCE_loss

if self.alpha is not None:
F_loss = self.alpha * F_loss

if self.reduction == 'mean':
return torch.mean(F_loss)
elif self.reduction == 'sum':
return torch.sum(F_loss)
else:

return F_loss

clean_text(text):
if not isinstance(text, str):
return ""
text = re.sub(r'https?://\S+|www\.\S+', '[URL]', text)
text = re.sub(r'\s+', ' ', text).strip()
return text

data_augmentation(text, techniques):
if random.random() < 0.5:
words = text.split()
if len(words) > 5:
indices_to_delete = random.sample(range(len(words)), int(len(words) * 0.2))
words = [word for i, word in enumerate(words) if i not in indices_to _delete]

text = '.join(words)
return text, techniques

analyze dataset(df):
logger.info("Analyzing dataset...")
print("Analyzing dataset...")

technique_counts = {technique: df[technique].sum() for technique in TECHNIQUES}
total_instances = len(df)

logger.info(f"Total instances: {total_instances}")
print(f"Total instances: {total_instances}")
logger.info("Class distribution:")

print("Class distribution:")

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHoro 3abe3nedeHHs 99
AHaJi3 MaHIMyISTUBHOCTI HOBUH 13 BUKOPHCTaHHSM aJrOPUTMIB MAIIMHHOTO HABYAHHS

for technique, count in technique_counts.items():
percentage = (count / total_instances) * 100
logger.info(f"{technique}: {count} instances ({percentage:.2f}%)")
print(f"{technique}: {count} instances ({percentage:.2f}%)")

cooccurrence = pd.DataFrame(®, index=TECHNIQUES, columns=TECHNIQUES)
for _, row in df.iterrows():
for i, techl in enumerate(TECHNIQUES):
if row[techl] == 1:
for tech2 in TECHNIQUES:
if row[tech2] == 1:
cooccurrence.loc[techl, tech2] += 1

logger.info("Co-occurrence of techniques:")

print("Co-occurrence of techniques:")

for i, tech in enumerate(TECHNIQUES):
co_techs = [(other_tech, cooccurrence.loc[tech, other_tech])

for other_tech in TECHNIQUES if other_tech != tech]

co_techs = sorted(co_techs, key=lambda x: x[1], reverse=True)[:3]
logger.info(f"{tech} frequently co-occurs with: {co_techs}")
print(f"{tech} frequently co-occurs with: {co_techs}")

df['text_length'] = df['content'].apply(lambda x: len(str(x).split()))

avg_length = df['text_length'].mean()
median_length = df['text_length'].median()
max_length = df['text_length'].max()

logger.info(f"Text length statistics: Avg={avg length:.1f}, Median={median_length},
Max={max_length}")

print(f"Text length statistics: Avg={avg length:.1f}, Median={median_length},
Max={max_length}")

over_limit = (df['text_length'] > CONFIG['max_length']).sum()

logger.info(f"Texts exceeding max_length ({CONFIG['max_length']}): {over_limit}
({over_limit/len(df)*100:.2f}%)")

print(f"Texts exceeding max_length ({CONFIG['max_length']}): {over_limit}
({over_limit/len(df)*100:.2f}%)")

class_weights = {}
for technique in TECHNIQUES:
pos_samples = df[technique].sum()
if pos_samples > 0:
weight = total_instances / (2 * pos_samples)
class_weights[technique] = min(weight, 10.0)
else:
class_weights[technique]

1.0

return class_weights

class ManipulationDataset(Dataset):
def _init_ (self, texts, targets=None, tokenizer=None, max_length=512, augment=False):
self.texts = texts
self.targets = targets
self.tokenizer = tokenizer
self.max_length = max_length
self.augment = augment

def __len_ (self):
return len(self.texts)

2025 p. IOxuenko Bagum

def

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 100
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

__getitem__ (self, idx):
text = str(self.texts[idx])
text = clean_text(text)

if self.augment and self.targets is not None and random.random() <

CONFIG["augment_ratio"]:

text, _ = data_augmentation(text, self.targets[idx])

encoding = self.tokenizer(
text,
max_length=self.max_length,
padding="'max_length',
truncation=True,
return_tensors="pt’

)
item = {
"input_ids': encoding['input_ids'].flatten(),
"attention_mask': encoding['attention_mask'].flatten()
}

if self.targets is not None:
item['targets'] = torch.tensor(self.targets[idx], dtype=torch.float)

return item

class ManipulationClassifier(nn.Module):

def

def

2025 p.

__init (self, model name, num_labels):
super(ManipulationClassifier, self). init ()
self.model = AutoModel.from pretrained(model name)

self.dropouts = nn.ModulelList([
nn.Dropout (CONFIG["dropout_rate"]) for _ in range(5)

D

hidden_size = self.model.config.hidden_size
self.pre_classifier = nn.Linear(hidden_size, hidden_size)
self.activation = nn.GELU()

self.classifier = nn.Linear(hidden_size, num_labels)

nn.init.xavier_normal (self.pre_classifier.weight)
nn.init.xavier_normal (self.classifier.weight)

forward(self, input_ids, attention_mask):

outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask

)

sequence_output = outputs[9]
cls_output = sequence_ output[:, 0, :]

cls_output
cls_output

self.pre_classifier(cls_output)
self.activation(cls_output)

logits = torch.zeros(cls_output.size(®), len(TECHNIQUES)).to(cls_output.device)
for dropout in self.dropouts:
logits += self.classifier(dropout(cls_output))

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 101
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

logits = logits / len(self.dropouts)
return logits

def process_data(file_path):
logger.info(f"Loading data from {file_path}")

if file_path.endswith('.parquet’):
df = pd.read_parquet(file_path)
else:
df = pd.read_csv(file_path)

logger.info(f"Loaded {len(df)} rows")

if 'techniques' in df.columns:
df['techniques'] = df['techniques’'].fillna("[]")

if isinstance(df['techniques'].iloc[@], str):
df['techniques'] = df['techniques’'].apply(lambda x: ast.literal eval(x) if
isinstance(x, str) else x)

for technique in TECHNIQUES:
df[technique] = df['techniques'].apply(lambda x: 1 if technique in x else 9)

df['content'] = df['content'].apply(clean_text)

if 'techniques' in df.columns:
df['manipulative'] = df['techniques'].apply(lambda x: 1 if len(x) > © else 9)

if 'language' not in df.columns and 'content' in df.columns:
def detect_language(text):
text = str(text).lower()
ukr_chars = sum(text.count(c) for c in ['i"', 'e', 'i'])
if ukr_chars > 0:
return ‘ukrainian’
return 'russian’

df['language'] = df['content'].apply(detect_language)
return df

def prepare_dataloaders(df, tokenizer, class weights):
if 'manipulative' in df.columns:
train_df, val _df = train_test split(
df, test_size=0.2, random_state=SEED,
stratify=df['manipulative’]
)

else:
train_df, val df = train_test split(df, test _size=0.2, random state=SEED)

logger.info(f"Training set: {len(train_df)} samples")
logger.info(f"Validation set: {len(val df)} samples")

train_dataset = ManipulationDataset(
texts=train_df['content'].values,
targets=train_df[TECHNIQUES].values,
tokenizer=tokenizer,
max_length=CONFIG['max_length'],
augment=CONFIG['use_data_augmentation']

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 102
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

val_dataset = ManipulationDataset(
texts=val_df['content'].values,
targets=val_df[TECHNIQUES].values,
tokenizer=tokenizer,
max_length=CONFIG['max_length'],
augment=False

)

train_loader = Dataloader(
train_dataset,
batch_size=CONFIG['batch_size'],
shuffle=True,
num_workers=2,
pin_memory=True

)

val_loader = Dataloader(
val_dataset,
batch_size=CONFIG['batch_size'],
shuffle=False,
num_workers=2,
pin_memory=True

)

return train_loader, val_loader, val_df, class_weights

def train_epoch(model, data_loader, optimizer, scheduler, device, class_weights=None):
model.train()
losses = []

pos_weight_tensor = None

if not CONFIG['use_focal loss'] and CONFIG['use_weighted loss'] and class_weights:
weights = [class_weights.get(tech, 1.0) for tech in TECHNIQUES]
pos_weight tensor = torch.tensor(weights, dtype=torch.float).to(device)
logger.debug(f"Using pos_weight for BCE: {pos_weight tensor}")

progress_bar = tqdm(data_loader, desc="Training")

for step, batch in enumerate(progress bar):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention mask'].to(device)
targets = batch['targets'].to(device)

outputs = model(input_ids=input_ids, attention_mask=attention_mask)

if CONFIG['use_focal loss']:
criterion = FocallLoss(gamma=CONFIG['focal gamma'])
loss = criterion(outputs, targets)
else:
if pos_weight_tensor is not None:
criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weight tensor)
else:
criterion = nn.BCEWithLogitsLoss()

if CONFIG['label_smoothing'] > @:
smoothed_targets = targets * (1 - CONFIG['label_smoothing']) +
(CONFIG['label_smoothing'] / 2)
loss = criterion(outputs, smoothed_targets)
else:

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 103
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

loss = criterion(outputs, targets)
loss = loss / CONFIG['gradient_accumulation_steps']

loss.backward()

if (step + 1) % CONFIG['gradient_accumulation_steps'] == © or (step + 1) =
len(data_loader):
torch.nn.utils.clip_grad_norm_(model.parameters(),
CONFIG['gradient_clipping'])

optimizer.step()
scheduler.step()
optimizer.zero_grad()

losses.append(loss.item() * CONFIG['gradient_accumulation_steps'])
progress_bar.set_postfix({'loss': np.mean(losses[-10:])})
return np.mean(losses)

def find_optimal_ threshold(y _true, y pred_proba):
thresholds = {}
logger.info("Finding optimal thresholds...")

for i, technique in enumerate(TECHNIQUES):
best f1 =0
best_threshold = 0.5

true_labels = y true[:, i]
pred_probs = y pred_proba[:, i]

for threshold in np.arange(0.15, 0.85, 0.01):
preds = (pred_probs >= threshold).astype(int)
f1l = f1_score(true_labels, preds, zero division=0)

if f1 > best_f1:
best_f1 = f1
best_threshold = threshold

thresholds[technique] = best_threshold
return thresholds

def evaluate(model, data_loader, device, thresholds=None):
model.eval()
all predictions_proba = []
all predictions = []
all targets = []

with torch.no_grad():
for batch in tqgdm(data_loader, desc="Evaluating"):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention _mask'].to(device)

outputs = model(input_ids=input_ids, attention_mask=attention_mask)
outputs_proba = torch.sigmoid(outputs).cpu().numpy()

if thresholds is not None:
preds = np.zeros_like(outputs proba, dtype=int)

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 104
AmHari3 MaHIIYISTHBHOCTI HOBHUH 13 BUKOPUCTAHHSAM aJITOPUTMIB MAllIMHHOTO HABYAHHS

for i, technique in enumerate(TECHNIQUES):
preds[:, i] = (outputs_probal:, i] >=

thresholds[technique]).astype(int)

else:
preds = (outputs_proba >= 0.5).astype(int)

all predictions_proba.extend(outputs_proba)
all predictions.extend(preds)

if 'targets' in batch:
targets = batch['targets'].cpu().numpy()
all targets.extend(targets)

all predictions_proba = np.array(all_predictions_proba)
all predictions = np.array(all_predictions)

results = {}

if len(all_targets) > 0:

all targets_array = np.array(all_targets)
macro_f1l = f1_score(all_targets_array, all predictions, average='macro')
results["macro_f1"] = macro_f1

class_fl1 scores = f1_score(all targets_array, all predictions, average=None)
class_metrics = {}
for i, technique in enumerate(TECHNIQUES):

class_metrics[technique] = class_f1 scores[i]

results["class_metrics"] = class_metrics

if thresholds is None:
optimal_thresholds = find_optimal threshold(all targets_array,

all predictions_proba)

results["optimal_thresholds"] = optimal_thresholds

results["targets"]

all targets_array

else:

results["targets"] None

results["predictions”] = all _predictions
results["predictions_proba"] = all predictions_proba

return results

def get class_weights(df):
class_weights = {}
total samples = len(df)

for technique in TECHNIQUES:

pos_samples = df[technique].sum()
if pos_samples > ©:
weight = total samples / (2 * pos_samples)
class_weights[technique] = min(weight, 10.0)
else:
class_weights[technique] = 1.0

return class_weights

def train_model(train_path):
logger.info(f"Using device: {CONFIG['device']}")

2025 p.

IOxnenko Bagnm

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 105
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

print(f"Using device: {CONFIG['device']}")

logger.info("Loading and processing data...")
print("Loading and processing data...")
df = process_data(train_path)

class_weights = None
if CONFIG['run_analysis'] or CONFIG['use_weighted_loss']:
class_weights = analyze_dataset(df)
if CONFIG['use_weighted_loss']:
logger.info(f"Calculated class weights for weighted BCE: {class_weights}")
print(f"Calculated class weights for weighted BCE: {class_weights}")

logger.info(f"Loading tokenizer: {CONFIG['model_name']}")
print(f"Loading tokenizer: {CONFIG['model_name']}")
tokenizer = AutoTokenizer.from_pretrained(CONFIG['model_name'])

train_loader, val_loader, val_df, _ = prepare_dataloaders(df, tokenizer, class_weights)

logger.info(f"Initializing model: {CONFIG['model_name']}")
print(f"Initializing model: {CONFIG['model_name']}")

model = ManipulationClassifier(CONFIG['model_name'], len(TECHNIQUES))
model.to(CONFIG['device'])

no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [

'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in
no_decay) and p.requires_grad],
'weight_decay': CONFIG['weight_decay']
¥
{

'params': [p for n, p in model.named_parameters() if any(nd in n for nd in
no_decay) and p.requires_grad],
'weight_decay': 0.0
}

]

optimizer = AdamW(optimizer grouped parameters, lr=CONFIG['learning_rate'])

num_training_steps_per_epoch = len(train_loader) //
CONFIG['gradient_accumulation_steps']
if len(train_loader) % CONFIG['gradient accumulation steps'] != @:
num_training_steps_per_epoch += 1

total_steps = num_training_steps_per_epoch * CONFIG['epochs']
warmup_steps = int(total steps * CONFIG['warmup_ratio'])

logger.info(f"Total optimization steps: {total steps}, Warmup steps: {warmup steps}")
print(f"Total optimization steps: {total steps}, Warmup steps: {warmup_steps}")

if CONFIG['scheduler'] == 'cosine':
scheduler = get _cosine_schedule_with_warmup(
optimizer,

num_warmup_steps=warmup_steps,
num_training_steps=total_steps
)
else:
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=warmup_steps,

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 106
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

num_training_steps=total_steps

)

best_f1 =0
best_epoch = 0
patience_counter = 0
thresholds = None

history = {
"train_loss': [],
'val f1': [],

‘class_f1': {technique: [] for technique in TECHNIQUES}
}

for epoch in range(CONFIG['epochs']):
logger.info(f"\nEpoch {epoch+1}/{CONFIG['epochs']}")
print(f"\nEpoch {epoch+1}/{CONFIG['epochs']}")

train_loss = train_epoch(model, train_loader, optimizer, scheduler,
CONFIG['device'], class_weights)

logger.info(f"Training loss: {train_loss:.4f}")

print(f"Training loss: {train_loss:.4f}")

history['train_loss'].append(train_loss)

val results = evaluate(model, val loader, CONFIG['device'], thresholds=thresholds
if thresholds else None)

val fl1 = val results["macro_f1"]

class_metrics = val_results["class_metrics"]

logger.info(f"Validation Macro F1: {val f1:.4f}")
print(f"Validation Macro F1: {val f1:.4f}")
history['val f1'].append(val f1)

if "optimal_thresholds" in val _results and val fl1 > best_ f1:
thresholds = val _results["optimal_thresholds"]
logger.info(f"Updated optimal thresholds based on best F1: {thresholds}")
print(f"Updated optimal thresholds based on best F1: {thresholds}")

for technique, f1 in class metrics.items():
logger.info(f"{technique}: {f1:.4f}")
print(f"{technique}: {f1:.4f}")
history['class f1'][technique].append(f1)

if val _f1 > best_f1:
best f1 = val f1
best_epoch = epoch
patience_counter = @

torch.save({
'model_state dict': model.state_dict(),
'thresholds': thresholds,
'config': CONFIG,
'class_metrics': class_metrics
}, 'best_model.pt')

logger.info("Saved best modell™)
print("Saved best model!")
else:
patience_counter += 1
logger.info(f"No improvement for {patience_counter} epochs.™)

2025 p. IOxuenko Bagum

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs

Amnamnis MaHiHyJ'IHTI/IBHOCTi HOBMH 13 BUKOPUCTAHHAM aJ'II‘OpI/ITMiB MAalIIMHHOI'O HaBYaHHS

print(f"No improvement for {patience_counter} epochs.")

if patience_counter >= CONFIG['patience']:

logger.info(f"Early stopping triggered after {epoch+1} epochs.™)

print(f"Early stopping triggered after {epoch+1} epochs.™)

break

torch.cuda.empty_cache()
gc.collect()

logger.info(f"Best validation Macro F1l: {best_f1:.4f} at epoch {best_epoch+1}")
print(f"Best validation Macro F1l: {best_f1:.4f} at epoch {best_epoch+1}")

plt.

plt.
plt.
plt.
plt.
.ylabel('Loss"')

plt

plt.

plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.

figure(figsize=(12, 5))

subplot(1, 2, 1)

plot(history['train_loss'], label='Training Loss"')
title('Training Loss")

xlabel('Epoch')

legend()

subplot(1, 2, 2)

plot(history['val_f1'], label='Validation Macro F1')
title('validation Macro F1'")

xlabel('Epoch')

ylabel('F1 Score')

legend()

tight layout()
savefig('training history.png')

print("Training history plot saved to 'training history.png'")

plt.

for

plt.
plt.
plt.
plt.
plt.
plt.
plt.

figure(figsize=(15, 8))
technique in TECHNIQUES:
plt.plot(history['class_f1'][technique], label=technique)

title('Class-wise F1 Scores')
xlabel('Epoch')

ylabel('F1 Score')
legend(loc="lower right')
grid(True)

tight layout()
savefig('class_f1 scores.png')

print("Class F1 scores plot saved to 'class_f1l scores.png'")

checkpoint = torch.load('best _model.pt"')
final_thresholds = checkpoint['thresholds’]
logger.info(f"Using thresholds from best epoch for final reporting: {final_ thresholds}")

print(f"Using thresholds from best epoch for final reporting: {final thresholds}")

return model, tokenizer, final_thresholds

def predict_test data(model, tokenizer, test file, thresholds=None):

logger.info(f"Loading test data from {test_file}")
test_df = process _data(test _file)

test_dataset = ManipulationDataset(

2025 p.

texts=test df['content'].values,
tokenizer=tokenizer,

IOxnenko Bagnm

107

Kadenpa inxenepii mporpaMHOro 3a0e3neueHHs 108
AHali3 MaHIMyJIATHBHOCTI HOBUH 13 BUKOPHUCTAHHSIM aJITOPUTMIB MAITHHHOTO HABYAHHSI

max_length=CONFIG['max_length']
)

test_loader = Dataloader(
test_dataset,
batch_size=CONFIG['batch_size'],
shuffle=False,
num_workers=2,
pin_memory=True

)

results = evaluate(model, test_loader, CONFIG['device'], thresholds)
predictions = results["predictions"]

submission_df = pd.DataFrame()
submission_df['id'] = test_df['id']

for i, technique in enumerate(TECHNIQUES):
submission_df[technique] = [pred[i] for pred in predictions]

return submission_df

def main():

train_path = '/kaggle/input/manip-
dataset/data/techniques_classification/train.parquet’

test_path = '/kaggle/input/manip-dataset/data/techniques_classification/test.csv'

logger.info("Configuration:")

print("Configuration:")

for key, value in CONFIG.items():
logger.info(f"{key}: {value}")
print(f"{key}: {value}")

model, tokenizer, thresholds = train_model(train_path)

checkpoint = torch.load('best _model.pt"')
model.load state dict(checkpoint['model state dict'])
thresholds = checkpoint['thresholds"']

submission_df = predict_test_data(model, tokenizer, test path, thresholds)

submission_df.to _csv('submission.csv', index=False)
logger.info("Submission file created!")
print("Submission file created!")

if _name__ == "_main__ ":
main()

2025 p. IOxuenko Bagum

	ПЕРЕЛІК СКОРОЧЕНЬ
	ВСТУП
	1 АНАЛІЗ ПРЕДМЕТНОЇ ОБЛАСТІ
	1.1 Актуальність розробки застосунку для пошуку маніпуляцій
	1.2 Опис предметного середовища
	1.3 Огляд існуючих аналогів
	1.3.1 Fallacy Detector
	1.3.2 Gaslight Check
	1.3.3 Fallacy Finder

	1.4 Аналіз розроблюваного застосунку
	Висновки до розділу 1

	2 ДОСЛІДЖЕННЯ, МОДЕЛЮВАННЯ І ТЕХНІЧНЕ ПРОЄКТУВАННЯ
	2.1 Опис набору даних й ознак
	2.2 Огляд методологій і підходів для навчання моделей
	2.2.1 Аналіз Machine learning models
	2.2.2 Аналіз Deep learning models
	2.2.3 Аналіз Transformer models
	2.2.4 Вибір моделі для виконання машинного навчання

	2.3 Стратегії навчання для оптимізації трансформерних моделей у завданні розпізнавання маніпулятивних технік
	2.4 Специфікації вимог до програмного забезпечення
	Висновки до розділу 2

	3 НАВЧАННЯ МОДЕЛЕЙ
	3.1 Підготовка датасету для навчання моделі span-detection
	3.2 Підготовка датасету для навчання моделі class-detection
	3.3 Навчання моделі класифікації технік маніпуляцій
	3.4 Навчання моделі span-detection
	Висновки до розділу 3

	4 ОЦІНКА Й ТЕСТУВАННЯ РОЗРОБЛЮВАНОГО РІШЕННЯ
	4.1 Аналіз й оцінка результатів навчання span-detection моделі
	4.2 Аналіз й оцінка результатів навчання class-detection моделі
	4.3 Аналіз роботи моделей інтегрованих у Телеграм
	Висновки до розділу 4

	ВИСНОВКИ
	ПЕРЕЛІК ДЖЕРЕЛ ПОСИЛАННЯ
	ДОДАТОК А
	ДОДАТОК Б

