груші яблоко повидло
груші яблоко повидло
Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://krs.chmnu.edu.ua/jspui/handle/123456789/3301
Titel: Інтелектуальна система комп'ютерного зору для розпізнавання та виявлення наземних мін ПФМ-1
Sonstige Titel: кваліфікаційна робота на здобуття освітнього ступеня «магістр» : спец. 122 «Комп’ютерні науки»
Autoren: Салютін, М. О.
Stichwörter: Кафедра інтелектуальних інформаційних систем
Сіденко Є. В.
розпізнавання
комп’ютерний зір
нейронні мережі
набір даних
CNN
YOLOv8
Python
recognition
computer vision
neural networks
data set
Erscheinungsdatum: Feb-2024
Herausgeber: ЧНУ ім. Петра Могили
Zusammenfassung: Актуальність дослідження полягає в створенні системи для розпізнавання та виявлення наземних мін ПФМ-1 для безпеки працівників ДСНС, військових та цивільних. Подібні програми вимагають високої точності розпізнавання, щоб відрізнити міну ПФМ-1 від звичайного листя або каміння, помилка повинна бути мінімізована. Об’єктом дослідження є процеси розпізнавання та виявлення наземних мін з використанням штучного інтелекту. Предметом дослідження є архітектури нейронних мереж для розпізнавання та виявлення наземних мін. Метою дослідження є розпізнавання і виявлення наземних мін за допомогою мобільних застосунків та з використанням різних архітектур нейронних мереж. Робота складається з фахового розділу, спеціальної частини з охорони праці та надзвичайних ситуацій, та методичної частини. Пояснювальна записка складається зі вступу, чотирьох розділів та висновків. Кожен розділ присвячено: аналіз всесвітньої проблеми, викликану через воєнні конфлікти, аналіз наявних аналогів систем розпізнавання, постановка задачі, вибір сучасних архітектур нейронних мереж для вирішення задачі розпізнавання наземних мін ПФМ-1, їх порівняння, моделюванню системи та імпорт моделі на ОС Android. Кваліфікаційна робота магістра містить 142 сторінки, 92 рисунки, 2 таблиці, 55 літературних джерел. The relevance of the study is to create a system for recognizing and detecting PFM1 landmines for the safety of rescue workers, military and civilians. Such applications require high recognition accuracy to distinguish a PFM-1 mine from ordinary leaves or stones, and the error must be minimized. The object of research is the processes of recognition and detection of PFM-1 landmines. The subject of the study is the methods of training a neural network that will allow recognizing and detecting PFM-1 mines. The aim of the work is to create a system for recognizing PFM-1 mines from a smartphone camera using different neural network architectures. The work consists of a professional section, a special part on labor protection and emergencies, and a methodological part. The explanatory note consists of an introduction, five chapters, and conclusions. Each chapter is devoted to: analysis of the global problem caused by military conflicts, analysis of existing analogues of recognition systems, problem statement, selection of modern neural network architectures for solving the problem of PFM-1 landmine recognition, their comparison, system modeling and importing the model to Android. The master's qualification work contains 142 pages, 92 figures, 3 tables, 55 references.
Beschreibung: Салютін. М. О. Інтелектуальна система комп'ютерного зору для розпізнавання та виявлення наземних мін ПФМ-1 : кваліфікаційна робота на здобуття освітнього ступеня «магістр» : спец. 122 «Комп’ютерні науки» / М. О. Салютін ; ЧНУ ім. Петра Могили. - Миколаїв, 2024. – 104 с.
URI: https://krs.chmnu.edu.ua/jspui/handle/123456789/3301
Enthalten in den Sammlungen:Факультет комп'ютерних наук

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Салютін 601 КРМ.pdf5.6 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.